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ABSTRACT OF DISSERTATION

STATISTICAL PROPERTIES OF PSEUDORANDOM SEQUENCES

Random numbers (in one sense or another) have applications in computer simulation,
Monte Carlo integration, cryptography, randomized computation, radar ranging, and
other areas. It is impractical to generate random numbers in real life, instead se-
quences of numbers (or of bits) that appear to be “random” yet repeatable are used
in real life applications. These sequences are called pseudorandom sequences. To de-
termine the suitability of pseudorandom sequences for applications, we need to study
their properties, in particular, their statistical properties. The simplest property is
the minimal period of the sequence. That is, the shortest number of steps until the
sequence repeats. One important type of pseudorandom sequences is the sequences
generated by feedback with carry shift registers (FCSRs). In this dissertation, we
study statistical properties of N -ary FCSR sequences with odd prime connection in-
teger q and least period (q − 1)/2. These are called half-`-sequences. More precisely,
our work includes:

• The number of occurrences of one symbol within one period of a half-`-sequence;

• The number of pairs of symbols with a fixed distance between them within one
period of a half-`-sequence;

• The number of triples of consecutive symbols within one period of a half-`-
sequence.

In particular we give a bound on the number of occurrences of one symbol within
one period of a binary half-`-sequence and also the autocorrelation value in binary
case. The results show that the distributions of half-`-sequences are fairly flat. How-
ever, these sequences in the binary case also have some undesirable features as high
autocorrelation values. We give bounds on the number of occurrences of two symbols
with a fixed distance between them in an `-sequence, whose period reaches the maxi-
mum and obtain conditions on the connection integer that guarantee the distribution
is highly uniform.

In another study of a cryptographically important statistical property, we study a
generalization of correlation immunity (CI). CI is a measure of resistance to Siegen-
thaler’s divide and conquer attack on nonlinear combiners. In this dissertation, we
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present results on correlation immune functions with regard to the q-transform, a
generalization of the Walsh-Hadamard transform, to measure the proximity of two
functions. We give two definitions of q-correlation immune functions and the relation-
ship between them. Certain properties and constructions for q-correlation immune
functions are discussed. We examine the connection between correlation immune
functions and q-correlation immune functions.

KEYWORDS: FCSRs, half-`-sequences, autocorrelation, correlation immunity, q-
transform, q-correlation immune functions

Author’s signature: Ting Gu

Date: May 3, 2016
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Chapter 1 Introduction

Nowadays, information technologies and communications fit into every corner of our

lives. People use the internet, banking systems, and mobile phones for social and

business interactions. Their data transactions and footprints can leave clues about

their most sensitive information and can cause harm in a variety of ways such as unau-

thorized illegal actions. The issues of guaranteeing secure transmission over public

channels has been widely studied in cryptology [58]. Cryptographic techniques are

used to provide confidentiality, authentication and data integrity during communi-

cation services such as email, banking or shopping on the internet. Historically,

cryptography was developed for the purpose of protecting secret information for mili-

tary and government organizations. Now it has become an indispensable tool used to

protect information in modern digital society. This dissertation concerns statistical

properties of certain high speed pseudorandom sequence generators. These have been

suggested for use as building blocks for stream ciphers.

1.1 Cryptography

Cryptography involves the processes of encryption of a plaintext (or message) and

decryption of the ciphertext (or encrypted message). Figure 1.1 shows the encryption

and decryption process, where ke is the encryption key and kd is the decryption key.

Ciphertext
c

Message m Message m
encryption with ke decryption with kd

Figure 1.1: Encryption and Decryption

There are mainly two types of cryptographic algorithms. One is asymmetric

cryptographic algorithms where ke 6= kd. These algorithms include the well known

1
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public key crypto-system RSA. The other type of cryptographic algorithm is sym-

metric cryptographic algorithms where ke = kd such as stream ciphers. The main

goal of cryptography is to design systems for securely transmitting information over

insecure channels. This goal is particularly challenging for transmission of large vol-

umes of information when the encryption and decryption must be fast. Since the

public key cryptographic algorithms are still far too slow for most practical needs,

many applications use public key cryptographic tools for key exchange and symmet-

ric key crypto-systems to provide confidentiality of data communication. The only

symmetric crypto-system that is guaranteed to be secure is the one-time pad. In

this system the message is first encoded as a binary sequence M = m0,m1,m2, · · · .

The sender and receiver of the message each has a copy of a random binary sequence

K = k0, k1, k2, · · · (the key). The message is encrypted by adding the key to the

message bitwise modulo two, forming the cipher

C = c0, c1, c2, · · · = (m0+k0 (mod 2)), (m1+k1 (mod 2)), (m2+k2 (mod 2)), · · · .

The message is recovered by the receiver by the same operation. This method is

provably secure against an adversary who knows part of the key. Moreover, it is

extremely fast, requiring a single exclusive or for each transmitted bit. However, it

requires the sender and receiver to securely share a key that is as large as the message,

hence is impractical for most situations.

Stream ciphers are practical solutions that use the same methods of encryption

and decryption as the one-time pad uses. They are typically used in digital telephones,

video on demand, and other applications where high volume data is transmitted. For

example, a stream cipher called A5/1 [11] is used to ensure the confidentiality of

phone conversations. Another stream cipher RC4 [54] is adopted by Wired Equiv-

alent Privacy (WEP), a part of the IEEE 802.11 wireless networking standard [20].

2
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Other examples include stream cipher E0 in Bluetooth [8], an industry standard for

short distance wireless networks. However, weakness and attacks on existing stream

ciphers are discovered, often using sophisticated mathematical concepts. For exam-

ple, the widely-used RC4 has serious flaws. As a result, several competitions were

undertaken by the cryptographic community to address the lack of secure stream

cipher standards that could be used by industry. These include the New European

Schemes for Signature, Integrity and Encryption (NESSIE) project [52] organized by

EU, the Cryptographic Research and Evaluation Committee (Cryptrec) [36] initiated

by Japan and the European Network of Excellence for Cryptology (ECRYPT) Stream

Cipher Project [55].

In a stream cipher the sequence K, however, is a pseudorandom sequence, which

is a sequence of numbers (or of bits) that appears to be “random” yet repeatable.

These sequences are often generated by a simple device called a keystream generator

whose initial state has a short description and is thus more easily shared than the

message. The goal of stream cipher design is to find keystream generators that have

short descriptions, are fast, and whose security approaches that of the one-time pad.

1.2 Statistical Properties of Pseudorandom Sequences

Pseudorandom sequences play an important role in many areas of communications

and computing such as the keystream sequences in stream ciphers, spread spectrum

communications, error correcting codes, and quasi-Monte Carlo integration. To de-

termine the suitability of pseudorandom sequences for application use, we need to

study their properties.

1.2.1 Period

One property is the minimal period length of the sequence. That is, the shortest

number of steps until the sequence begins to repeat.

3
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Definition 1.2.1 ([30, p. 15]) A sequence a = (a0, a1, · · · ) is eventually periodic if

there exists a p ∈ Z, p > 0 and u ≥ 0 such that

ai+p = ai for all i > u (1.1)

If u = 0, a is strictly periodic or just periodic. The smallest p that satisfies the eq.

(1.1) is called the period of a.

It is seen from the previous section that stream cipher encryption is based on

addition modulo two, so all of the strength of the encryption is derived from the

secrecy of the pseudorandom sequence. Since the pseudorandom sequence has a pe-

riod, an attacker knows that any terms separated by the minimum period length were

encrypted by addition modulo two with the same term and this is true for all terms

after the sequence begins to repeat. As a result, information may be leaked, security

may be lost. Therefore it is a basic requirement that a pseudorandom sequence that

is used for a stream cipher encryption should have large period and in particular

much longer than the message length.

1.2.2 Randomness

Pseudorandom sequences are required to satisfy several randomness properties; oth-

erwise attacks may be launched based on the statistical deviation between the pseu-

dorandom sequences and truly random sequences. In 1967 Golomb proposed three

postulates for the appearance of binary periodic pseudorandom sequences.

• It should be balanced. The difference between the number of 1s and the number

of 0s must be at most one.

• It should have the run property. About half of the runs (sequences of the same

bit) must be of length one, one quarter of length two, one eighth of length three,

4
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etc. Moreover, there must be equally many runs of 1s and of 0s for each of these

lengths.

• It should have an ideal autocorrelation function.

A binary sequence which satisfies Golomb’s randomness postulates is called a

pseudo-noise sequence or a pn-sequence [48, p.181]. The properties stated in the

above postulates can be empirically measured by various statistical tests. Pseudo-

random sequences are supposed to pass all the statistical tests of randomness that

can be found. Another important property is the unpredictability. Given the first k

bits of the sequence, it should be computationally infeasible to predict the next k+ 1

bit unless the secret seed is given. The best way to generate unpredictable random

numbers is by using some physical process such as thermal noise or radioactive de-

cay. However, these methods are extremely inefficient. In practice, pseudorandom

sequence generators based on deterministic algorithms are used to generate sequences

of bits. A random seed is used for these generators. An attacker must not be able

to make any correct predictions with probability significantly better than guessing

without the seed. This should hold even with the knowledge of design detail of the

generators. A pseudorandom sequence generator should have the following properties:

• good randomness properties of output sequences;

• speed and efficiency;

• reproducibility;

• large period.

1.3 Contribution

Feedback with carry shift registers (FCSRs), first introduced by Klapper and Goresky

in 1993 [42], are high speed pseudorandom sequence generators based on integer ad-

5
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dition. They are important building blocks of pseudorandom sequence generators in

stream ciphers. Since speed and efficiency are important for pseudorandom sequence

generators, it is vital to have efficient hardware or software implementations for FC-

SRs. Lee and Park [43] proposed software implementations for word-based FCSRs in

2011. They improved the efficiency of software implementation of FCSRs by increas-

ing the size of register cells from 1 bit to k bits, where k is the size of words in a given

CPU (e.g. k = 32). Sequences of k bits are produced at every clocking. Their imple-

mentations with simple arithmetic operators (such as shifts, maskings, xors, modular

additions, etc.) over variables of size 232 or 216 are claimed to have better efficiency

than usual methods using conditional operators (such as ‘if’ statements) to handle

the carry in FCSRs. It is nice to see efficient software implementations for FCSRs,

but we also need the generated FCSR sequences to have good statistical properties.

In this dissertation, we call the FCSR sequences generated by the FCSRs with

the word-based software implementations as described by Lee and Park [43] half-`-

sequences [33] and investigate their statistical properties. These properties include:

• The number of occurrences of one symbol within one period of a half-`-sequence;

• The number of pairs of symbols with a fixed distance between them within one

period of a half-`-sequence;

• The number of triples of consecutive symbols within one period of a half-`-

sequence.

In particular we give a bound on the number of occurrences of one symbol within

one period of a binary half-`-sequence and also the autocorrelation value in binary

case. The results show that the distributions of half-`-sequences are fairly flat. How-

ever, these sequences in the binary case also have some undesirable features such as

high autocorrelation values. We give bounds on the number of occurrences of two

symbols with a fixed distance between them in an `-sequence, whose period reaches

6
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the maximum and obtain conditions on the connection integer that guarantee the

distribution is highly uniform.

In another study of a cryptographically important statistical property, we study a

generalization of correlation immunity (CI). CI is a measure of resistance to Siegen-

thaler’s divide and conquer attack on nonlinear combiners. In this dissertation, we

present results on correlation immune functions with regard to the q-transform, a

generalization of the Walsh-Hadamard transform, to measure the proximity of two

functions. We give two definitions of q-correlation immune functions and the relation-

ship between them. Certain properties and constructions for q-correlation immune

functions are discussed. We examine the connection between correlation immune

functions and q-correlation immune functions.

1.4 Organization

The remainder of this dissertation is structured as follows. Chapter 2 provides basics

of linear feedback shift registers (LFSRs) and FCSRs. The structure of keystream

generators is given. Useful mathematical tools and preliminaries on Boolean func-

tions are listed. Chapter 3 and 4 discuss some statistical properties of pseudorandom

sequences. More precisely, Chapter 3 investigates distribution properties of half-`-

sequences. We show that this type of sequences has a fairly flat distribution. In

Chapter 4, a combination of topics is addressed, including the distribution properties

of combined half-`-sequences, autocorrelation of half-`-sequences and distribution fea-

tures of `-sequences. Chapter 5 presents some results on correlation immune functions

with regard to q-transforms. We discuss certain properties and construction for this

type of function. In Chapter 6 we discuss future research directions on distribution

properties of pseudorandom sequences.

Copyright c© Ting Gu, 2016.
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Chapter 2 Background and Preliminaries

Shift register sequences are used in both cryptography and coding theory and many

other areas [28]. Because shift registers can be easily implemented in digital hardware,

many stream ciphers are made up of shift registers. Stream ciphers based on shift

registers have been used for military cryptography since the beginning of electronics

[58]. A feedback shift register consists of two parts: a shift register and a feedback

function. The shift register is a sequence of bits, whose length is the number of bits

it contains. Each time the new left-most bit is computed as a function of the bits

in the register. The right-most bit becomes the output bit and all of the remaining

bits in the shift register shift one bit to the right. The period of a shift register is the

length of the output sequence before it starts to repeat.

In this chapter, we recall LFSRs and FCSRs. Detailed information on LFSRs and

FCSRs can be found in the books by Golomb [28] and Goresky and Klapper [30]. We

show some statistical properties of two important types of pseudorandom sequences:

m-sequences and `-sequences, which are the maximum period sequences of LFSRs

and FCSRs respectively. We discuss different ways to represent Boolean functions

and the structure of keystream generators. At the end of the chapter we present some

useful mathematical tools that are used throughout this dissertation.

2.1 Linear Feedback Shift Registers

The simplest kind of feedback shift registers is the LFSR (see Figure 2.1). LFSRs

have been studied intensively for over fifty years [28]. They are widely used in areas

of cryptography and coding theory and other areas. They are simple and fast in

hardware implementations. Various statistical properties of the output sequences of

an LFSR can be fully analyzed by using efficient algebraic tools (principally using the

8
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Galois theory of finite fields and the algebra of power series rings). Many fast devices

use LFSRs as building blocks to generate sequences whose statistical properties are

good. There are two modes of LFSRs: Fibonacci mode LFSR and Galois mode

LFSR. In general, it is preferred to use Fibonacci mode LFSR if the hardware for

implementation is effective at shifts and to use Galois mode LFSR if parallelisms

can be exploited. In this section, for simplicity, we only describe the Fibonacci

mode LFSR. Details on Galois mode LFSR can be found in Golomb’s book [28]. We

introduce an important type of pseudorandom sequence, the maximum period LFSR

sequences, and discuss their statistical properties in this section.

Definition 2.1.1 ([30, p. 23]) A (Fibonacci mode) linear feedback shift register of

length m over a commutative ring R, with coefficients

q1, q2, · · · , qm ∈ R

is a sequence generator whose state is an element

s = (a0, a1, · · · , am−1) ∈ Rm,

whose output is out(s) = a0, and whose state change operation τ is given by

(a0, a1, · · · , am−1)→ (a1, a2, · · · , am−1,
m∑
i=1

qiam−i).

Figure 2.1 shows the structure of a linear feedback shift register.

The output sequence a = a0, a1, · · · of an LFSR of length m satisfies a linearly

recurrence relation for all n ≥ m

an = q1an−1 + · · ·+ qman−m. (2.1)

9
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am−1 am−2 · · · a1 a0

��
��
q1 ��
��
q2 ��

��
qm−1��
��
qm· · ·

⊕

- -
out

�
�

�
�

Figure 2.1: A Linear Feedback Shift Register of Length m.

The integer m is called the degree of the recurrence relation. The elements q1, · · · , qm

are called the coefficients of the recurrence relation. This recurrence relation can be

expressed by the polynomial

q(x) = −1 +
m∑
i=1

qix
i ∈ R[x].

This polynomial is called the connection polynomial or the feedback polynomial. It is

reciprocal to the characteristic polynomial of the above linearly recurrence relation.

The characteristic polynomial can be calculated by

f(x) = q(x−1)× xm = −xm + q1x
m−1 + · · ·+ qm−1x+ qm.

If R is finite, then the number of possible states for an LFSR of a fixed length m

is |R|m, hence the state of the LFSR must repeat after |R|m steps. Therefore, the

output sequence is eventually periodic. Conversely, any eventually periodic sequence

a can be generated by an LFSR. The number of cells in the shortest LFSR that

can generate a is called the linear complexity or linear span of a. An LFSR with

a primitive feedback polynomial is called a maximum-length LFSR and its output

sequence is called an m-sequence. A formal definition of m-sequence is shown below.

10
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Definition 2.1.2 ([30, p. 208]) The sequence a is an m-sequence (over finite ring

R) of rank r (or degree r or span r) if it can be generated by an LFSR of length r,

and if every nonzero block of length r occurs exactly once in each period of a.

In other words, the sequence a is the output sequence of an LFSR that cycles through

all possible nonzero states before it repeats and it has the maximum period |R|m −

1. An m-sequence is balanced, is equidistributed to the order of the size of the

corresponding LFSR, and has the run property. A sequence is equidistributed to

order r if for every k (1 ≤ k ≤ r) the number of occurrences of a block of length k

is in the inclusive range between bT/|A|kc and dT/|A|ke where T is the period of the

sequence and A is the finite set from which each symbol in the sequence comes. An

m-sequence is a pn-sequence from the definition in Section 1.2.2. More results related

to m-sequences can be found in Golomb’s book [28].

2.2 Feedback with Carry Shift Registers

An FCSR is another type of feedback shift register that is similar to an LFSR, but

with extra memory parts. More precisely, an FCSR is an arithmetic or with carry

analog of an LFSR. It was first introduced by Klapper and Goresky in 1993 [39].

The idea was motivated by the cryptanalysis of the summation combiner [56]. They

were also invented by Marsaglia [45, 46, 47] and Couture and L’Écuyer [23, 46] in the

context of quasi-Monte Carlo simulation.

The analysis of FCSR sequences is based on N -adic numbers, which have been

studied since at least the early 1900s. An N -adic number a is an infinite expression

a =
∞∑
i=0

aiN
i

where ai ∈ {0, 1, · · · , N − 1}.

11
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Let

ZN =

{
∞∑
i=0

aiN
i, ai ∈ {0, 1, · · · , N − 1}

}
.

By defining addition and multiplication operations of N -adic numbers, ZN forms a

ring and the additive inverse of the multiplicative identity element is

−1 = (N − 1)
∞∑
i=0

N i.

This ring ZN is an arithmetic or with carry analog of the ring of power series over

Z/(N). Let S = {0, 1, · · · , N−1}. Figure 2.2 shows an N -ary Fibonacci mode FCSR

of length m with multipliers (or taps) q1, · · · , qm whose state is a collection

(a0, · · · , am−1; z) where ai ∈ S and z ∈ Z.

z am−1 am−2 · · · a1 a0

��
��
q1 ��
��
q2 ��

��
qm−1��
��
qm· · ·

∑

-
mod N

-
out

�
div N

-

�
�

�
�

Figure 2.2: A Feedback with Carry Shift Register of Length m.

The state change of a Fibonacci mode FCSR is as follows. First we compute the

linear combination

σ =
m∑
i=1

qiam−i + z ∈ Z.

Then the contents of the state cells shift one step to the right and output the element

12
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in the right most cell. The left most cell and the next stage memory is updated by

am = σ mod N, (2.2)

z
′
= σ Div N =

σ − am
N

. (2.3)

In other words, the new state is

(a1, · · · , am−1, σ (mod N);σ (div N)).

An FCSR can also be described in its Galois mode [30, 32, p. 154]. A Galois mode

FCSR is preferred for parallelism consideration. One of the stream cipher candidates

in eStream project, the F-FCSR stream ciphers [2, 3], uses an FCSR in Galois mode.

Let N be a positive integer and S = {0, 1, · · · , N − 1}. Denote by the symbol∑
an integer adder (mod N) with carry. Figure 2.3 shows a Galois mode FCSR of

length m with multipliers (or taps) q1, · · · , qm whose state is a collection

(a0, a1, · · · , am−1; c1, c2, · · · , cm) where ai ∈ S and ci ∈ Z.

The state change of a Galois mode FCSR is as follows. First we compute the

linear combination

σm = cm + qma0

and

σj = cj + aj + qja0, 1 ≤ j < m.

Each of the new state cells and memory cells are updated individually by

a
′

j−1 = σj (mod N)

13
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��
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��
��

��
��

��
��

qm qm−1 q2 q1

m m mm ∑ ∑ ∑∑
am−1 · · · a1 a0

- - - - -- - -

6 6 66

��
��

��
��

��
��

��
��

cm cm−1 c2 c1

6 6 66

? ? ??

Figure 2.3: Galois FCSR

c
′

j = σj div N = bσj/Nc

such that

Nc
′

j + a
′

j−1 = cj + aj + qja0 (1 ≤ j < m)

and

Nc
′

m + a
′

m−1 = cm + qma0.

The output sequence a = a0, a1, · · · satisfies a linearly recurrence relation with

carry modulo N for all n ≥ m

an +Nzn =
m∑
i=1

qian−i + zn−1. (2.4)

The integer m is called the length (or span or degree) of the recurrence relation. The

integers q1, · · · , qm are called the coefficients of the recurrence relation. The infinite

sequence zm−1, zm, zm+1, · · · of integers are the memory values. Set q0 = −1. We
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associate the recurrence relation with a connection integer

q = −1 +
m∑
i=1

qiN
i =

m∑
i=0

qiN
i. (2.5)

The following important theorem reveals the relationship between N -adic numbers

and the structure of an FCSR.

Theorem 2.2.1 [30, 40] Let q be the connection integer of an FCSR with initial

memory zm and initial loading a0, a1, · · · , am−1. Any output sequence a of this FCSR

is the coefficient sequence of the N-adic representation of the rational number

a =
∞∑
i=0

aiN
i =

f

q
∈ ZN , f ∈ Z.

An exponential representation is a useful tool to analyze shift register sequences.

Our analyses of distribution properties of half-`-sequence depend on the exponential

representation of FCSR sequences, an analog of the trace representation of LFSR

sequences. Let q > 1 and N be positive integers with gcd(N, q) = 1. Throughout

this dissertation, we shall consider only the case when q is an odd prime unless

otherwise specified. An N -ary FCSR sequence a = {ai}∞i=0 with connection integer q

can be algebraically defined or exponentially represented by

ai = N−ih (mod q) (mod N), (2.6)

where h ∈ Z/(q), the residue ring modulo q. Here the notation (mod q) (mod N)

means first that the numberN−ih is reduced modulo q to give a number between 0 and

q−1 and then the number is reduced modulo N to give a number in {0, 1, · · · , N−1}.

We study the period of FCSR sequences here. The eventual period of an FCSR

sequence with connection integer q is a divisor of ordq(N), the multiplicative order of

N modulo q. The largest possible value of ordq(N) is φ(q), Euler’s totient function
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of q, and ordq(N)|φ(q). In the extreme case, φ(q) = q− 1 when q is a prime number.

In particular, when an FCSR sequence s achieves maximum period, in other words,

ordq(N) = φ(q), a is referred to as an `-sequence [29, 30].

Much work has been done on the statistical properties of `-sequences. Goresky

and Klapper showed that the number of occurrences of any two blocks in one period

of an `-sequence can differ at most by 1 if q is prime [41].

Theorem 2.2.2 Let a be an N-ary `-sequence based on a connection integer q = pt

with an odd prime p. Then the number n(b) of occurrences of any block b of size s

within a single period of a is

n1 ≤ n(b) ≤ n1 + 1 if t = 1

n1 − n2 − 1 ≤ n(b) ≤ n1 − n2 + 1 if t ≥ 2,

where

n1 =
⌊ q

N s

⌋
=

⌊
pt

N s

⌋
and n2 =

⌊
pt−1

N s

⌋
.

L-sequences are balanced and their arithmetic autocorrelations are zero [31, 42,

53]. The ordinary autocorrelation of binary `-sequences has also been studied. Xu

and Qi studied the expected value and variance of autocorrelations with prime power

connection integer [66]. They showed that when the connection integer is sufficiently

large, the autocorrelation for a random shift is low with high probability. Tian and Qi

gave an upper bound on the autocorrelations of `-sequences with prime connection in-

teger [61]. More specifically, the autocorrelation is less than or equal to 2 (dq/6e − 1),

where q is the prime connection integer. In this paper, we use the above result for

the estimation of the autocorrelations of binary half-`-sequences.

As in the case of linear complexity, the 2-adic complexity of a sequence is a measure

of the length of FCSR required to output the sequence.
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Definition 2.2.1 Let a = a0, a1, a2, · · · be an eventually periodic binary sequence,

whose 2-adic expression is
∞∑
i=0

ai2
i =

p

q

where gcd(p, q) = 1. Then the 2-adic complexity of a is the real number log2(φ(p, q)),

where φ(p, q) = max(|p|, |q|).

2.3 Boolean Functions

Boolean functions play crucial roles in the design of cryptographic primitives. In

particular, they are widely used as components of pseudorandom sequence generators

for stream ciphers. In this section, we recall different representations of Boolean

functions and their properties. A more detailed description on Boolean functions can

be found in Cusick and Stanica’s book [25]. We begin with some notations that will

be used throughout this dissertation.

Let Fn2 be the vector space of dimension n over the field F2 (Galois field with two

elements). The lexicographical order of vectors is defined as: for x, y ∈ Fn2 , x ≤ y if

and only if there exists i ∈ {0, 1, · · · , n − 1} such that x0 = y0, · · · , xi−1 = yi−1 and

xi < yi. The Hamming weight of a vector x is denoted by wt(x) = |{i : xi 6= 0}|,

the number of nonzero positions. The support of a vector x is the set of indices of

nonzero positions, i.e., supp(x) = {i : xi 6= 0}. The Hamming distance between two

vectors x and y, denoted by d(x, y), is the number of positions in which x and y differ

from each other. For the purpose of clarity, we use “⊕” for addition modulo 2 and

“+” for addition in Z. The inner product or scalar product of two vectors x and y is

denoted as x · y = x1y1 ⊕ · · · ⊕ xnyn.

A Boolean function f in n variables is a map from Fn2 to F2. The set of all Boolean

functions on Fn2 is denoted by Bn. A Boolean function f can be uniquely represented
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by its truth table as (f(v0), f(v1), ..., f(v2n−1)) where

v0 = (0, ..., 0, 0), v1 = (0, ..., 0, 1), ..., v2n−1 = (1, ..., 1, 1)

are ordered by the lexicographical order.

Another way to uniquely represent a Boolean function f is by the polynomial

f(x) =
⊕
a∈Fn2

cax
a1
1 · · ·xann ,

where ca ∈ F2 and a = (a1, · · · , an) with ai ∈ {0, 1}. This is called the algebraic

normal form (ANF) of f . The number of variables in the highest order monomial

with a nonzero coefficient is called the algebraic degree, or simply the degree of f .

The Boolean functions with degree less than or equal to 1 are called affine func-

tions. They take the form fa,c(x) = a · x ⊕ c = a1x1 ⊕ · · · ⊕ anxn ⊕ c, where

a = (a1, · · · , an) ∈ Fn
2 and c ∈ F2. If c = 0, then fa,0 (= fa) is a linear function.

A Boolean function can also be uniquely determined by its Walsh-Hadamard

transform. The Walsh-Hadamard transform plays an important role in cryptography.

For a Boolean function of n variables f(x) = f(x1, x2, · · · , xn), the Walsh-Hadamard

transform of f(x) at ω ∈ Fn2 is defined as

W (f)(ω) =
∑
x∈Fn2

(−1)f(x)⊕ω·x

The Walsh-Hadamard transform is a useful tool to analyze the properties of

Boolean functions. For example, let 0̄ = (0, 0, · · · , 0) be the zero vector, a Boolean

function f is balanced if W (f)(0̄) = 0. It can also be used to measure the nonlinearity

of a Boolean function, the minimum distance from the set of all affine functions. The
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nonlinearity of f(x) is defined by

Nf = min
a∈Fn2 /{0̄},b∈F2

|{x ∈ Fn2 : f(x) 6= a · x⊕ b}|.

For cryptographic applications, we generally require that f(x) must be ‘far’ from

the affine map l(x) = a · x⊕ b, that is, Nf needs to be large. The Walsh-Hadamard

transform of f(x) can measure Nf by

Nf = 2n−1 − 1

2
max
ω∈Fn2
|W (f)(ω)|.

Due to the Parseval identity on W (f)(ω), i.e.,
∑

ω∈Fn2
W (f)(ω)2 = 22n, we have

Nf ≤ 2n−1 − 2n/2−1.

f(x) is called a bent function if the inequality above achieves equality. Indeed, f(x)

is bent if and only if |W (f)(ω)| = 2n/2 for all ω ∈ Fn2 .

Another notion of interest is the autocorrelation of a Boolean function. The

autocorrelation of a Boolean function f ∈ Fn2 is a real-valued function defined as

rf (ω) =
∑
x∈Fn2

(−1)f(x)⊕f(ω⊕x)

for all ω ∈ Fn2 .

Boolean functions used in cryptographic applications are required to satisfy certain

properties to resist existing attacks. One such property is the correlation immunity of

a Boolean function, which comes from the relation between f(x) and linear functions.

We explain this notion in more detail in Chapter 5. One can find details on other

properties of Boolean functions in many books and papers [15, 16, 26, 57].
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2.4 Keystream Generators

In a stream cipher, a keystream generator (see Definition 2.4.1) produces a pseudo-

random sequence of bits. This sequence is added bit by bit with the plaintext to get

the ciphertext [30, p. 9]. Stream ciphers are used for transmitting large amounts

of data. They are extremely fast and are often implemented in hardware for added

speed. The keystream generator must be designed to produce a pseudorandom se-

quence with enormous period using a relatively simple algorithm. The keystream

sequence should be unpredictable from the knowledge of a (relatively small) segment

of the sequence; otherwise, it is vulnerable to a known-plaintext attack. In a known-

plaintext attack, the attacker attempts to recover a large section of keystream with

knowledge of a relatively small section of plaintext.

Definition 2.4.1 [30, p. 20] A keystream generator, or a discrete state machine

with output

F = (U,Σ, f, g)

consists of a discrete (i.e., finite or countable) set U of states, a discrete alphabet

Σ of output values, a state transition function f : U → U , and an output function

g : U → Σ.

Given an initial state s ∈ U , such a keystream generator outputs an infinite

sequence

F = g(s), g(f(s)), g(f 2(s)), · · ·

with elements in Σ. Fig. 2.4 shows a keystream generator with initial state s. The

state s is periodic of period T if starting from s, after T steps, the generator returns

to the state s. That is, if fT (s) = s. The least period of such a periodic state is the

least such T ≥ 1. A state s is eventually periodic if, starting from s, after a finite

number of steps, the generator arrives at a periodic state.
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State

s
- state transition function f

?

New state f(s), f2(s), · · ·

- output function g -Keystream g(s), g(f(s)), · · ·

Figure 2.4: Keystream Generator

LFSRs are pseudorandom generators by themselves, but they have some unpleas-

ant features. For an LFSR of length n, the internal state is the next n output bits

of the generator. By observing the first n bits of output, the attacker can obtain

the initial internal state. Since the state transition function of an LFSR is linear, all

the generated sequence of this LFSR can be retrieved by solving a linear system of

equations of the initial internal state. This property makes an LFSR by itself inap-

propriate for encryption. Also, the feedback coefficients of an LFSR with length n can

be determined from only 2n output bits of the generator by using Berlekamp-Massey

algorithm [7]. As a result, keystream generators based on LFSRs often employ non-

linear output functions. There are two widely used generator structures based on

LFSRs. One structure employs several LFSRs with a combiner function as shown in

Figure 2.5. The output bits of each LFSR serve as the input of a nonlinear Boolean

function f(x). The keystream sequences are the output bits of f(x). Another struc-

ture is an LFSR with a nonlinear filter function as shown in Figure 2.6. The internal

states of one LFSR serve as the input of a nonlinear function and this nonlinear fil-

ter function outputs the keystream sequences. There are various examples of stream

ciphers using LFSRs as building blocks. These include ABC [1], SOSEMANUK [6],

Sfinks [10], A5 [11], Yamb [24], Snow [27], Polar Bear [34], WG [50] and E0 [60],.
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Figure 2.5: A Nonlinear Combination Generator
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Figure 2.6: A Nonlinear Filter Generator

Because the state transition or update function for an LFSR is linear, keystream

generators based on LFSRs still have weakness. For example, they are vulnerable to

algebraic attacks [13, 14, 21, 22, 37]. The basic principle of algebraic attacks is to

express the whole cipher as a large system of multivariate algebraic equations. This

system of equations can be solved to recover the secret key or the initial state of

the LFSRs. However, this fails for FCSRs. These devices were suggested to use for

generation of binary sequences with large periods. They share many good properties

with LFSR sequences. Their inherent non-linearity makes them promising building

blocks in stream cipher design. There have been several proposals of stream ciphers
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based on FCSRs [2, 4, 5]. One of them is the F-FCSR stream cipher in the eStream

project [55]. The F-FCSR stream cipher uses an FCSR in Galois mode and takes a

linear combination of the state bits to produce output. The stream cipher is extremely

fast due to the very simple output function. LFSR based stream ciphers are also

vulnerable to correlation attack. This attack works by exploiting known correlations

between inputs (or combinations of inputs) and outputs (or combinations of outputs).

Such attack depends on finding statistical biases in the outputs and reduces the

expected number of keys that must be tested in a search of the key space. We will

recall more about this attack in Chapter 5.

2.5 Mathematic Tools

The important mathematical tools used in this paper are exponential sums and the

discrete Fourier transform. Exponential sums are significant techniques in number

theory and are useful in various applications of finite fields. Group homomorphisms

called characters play a basic role in analyzing exponential sums in finite fields.

A character of an Abelian group G is a group homomorphism from G to the

multiplicative group C× = C \ 0 of the complex numbers. That is, it is a function

χ : G→ C such that χ(ab) = χ(a)χ(b). Let R be a ring. An additive character is a

character on the additive group of R. We can get a multiplicative character on the

multiplicative group of units of R. The Legendre symbol (see definition (2.5.1)) is an

example of a multiplicative character.

An integer a is called a quadratic residue modulo n if gcd(a, n) = 1 and

x2 ≡ a (mod n) (2.7)

has a solution (i.e., if a is a “perfect square modulo n”). If eq. (2.7) has no solution,

we say a is a quadratic nonresidue modulo n.
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Note here that if integer a does not satisfy the condition that gcd (a, n) = 1, it

can not be classified as a quadratic residue or a quadratic nonresidue. In particular,

0 is considered neither a quadratic residue nor a quadratic nonresidue. While the

modulus n can be any arbitrary positive integer, we are more interested in the case

when n is an odd prime.

Proposition 2.5.1 Let p be an odd prime. Then any a ∈ V = {1, 2, · · · , p − 1} is

either a quadratic residue or a quadratic nonresidue modulo p.

In other words, exactly half of |V | (i.e., (p − 1)/2) are quadratic residues modulo p

and exactly half are quadratic nonresidue modulo p.

In number theory, the Legendre symbol is an important quadratic character

χ(a) :=
(
a
p

)
where a ∈ F = Fp with p prime.

Definition 2.5.1 Let p be an odd prime. Let a be an integer. The Legendre symbol

of a modulo p is defined as
(
a
p

)
≡ a(p−1)/2 (mod p) and

(
a

p

)
=


1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p,

0 if a ≡ 0 (mod p).

The properties of the Legendre symbol are useful in the analysis of distribution

properties of pseudorandom sequences in next chapter.

Lemma 2.5.1 Let p be an odd prime. Let gcd(a, p) = 1 and gcd(b, p) = 1 where

a, b ∈ Z. We have the following properties related to the Legendre symbol.

• if a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
;

•
(
ab
p

)
=
(
a
p

)(
b
p

)
;
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•
(
a2

p

)
= 1;

•
(
−1
p

)
=


1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

•
(

2
p

)
=


1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

We consider the sum of characters over all elements of a field. Notice that for

any a ∈ Fp with p prime, χ(a) is a complex root of unity since if ak = 1 we have

(χ(a))k = χ(ak) = χ(1) = 1. Let ξ be a complex primitive qth root of unity. In other

words, q is the smallest number such that ξq = 1. The exponential sums enter into

our problem by means of the following well known basic identity [62]

q−1∑
b=0

ξbc =

 q if c ≡ 0 (mod q),

0 otherwise.
(2.8)

Our analysis is based on Weil’s theorem, which is the one of the most beautiful

results in 20th century mathematics.

Lemma 2.5.2 (Weil’s Theorem [44, p. 223]) Let q be a prime greater than 2 and

ξ be a complex primitive qth root of unity. For a polynomial g(x) ∈ (Z/(q))[x] with

deg(g) ≥ 1, we have ∣∣∣∣∣∣
∑
c∈Zq

ξg(c)

∣∣∣∣∣∣ ≤ (deg(g)− 1)q1/2.

In particular,

∣∣∣∣∣∑
z∈Q

ξbz

∣∣∣∣∣ =
1

2

∣∣∣∣∣
q−1∑
c=1

ξbc
2

∣∣∣∣∣ =
1

2

∣∣∣∣∣
q−1∑
c=0

ξbc
2 − 1

∣∣∣∣∣ ≤ 1

2

(
q1/2 + 1

)
,

where b 6≡ 0 (mod q) and Q is the set of quadratic residues modulo q.
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The Fourier transform of a complex valued function f : Z/(q)→ C is given by

f̂(b) =
1

q

q−1∑
c=0

f(c)ξ−bc.

By the Fourier inversion formula we have

f(c) =

q−1∑
b=0

f̂(b)ξbc.

We also need the following two lemmas.

Lemma 2.5.3 Let ξ be a complex primitive qth root of unity. For positive integers

c1, c2, N and z, we have

∣∣∣∣∣
c2∑
j=c1

ξjNz

∣∣∣∣∣ =

∣∣∣∣sin(πNz(c2 − c1 + 1)/q)

sin(πNz/q)

∣∣∣∣ .
Proof . We have

∣∣∣∣∣
c2∑
j=c1

ξjNz

∣∣∣∣∣ =

∣∣∣∣∣
c2∑
j=c1

ξjNz

∣∣∣∣∣ =

∣∣∣∣ξNz(c2−c1+1) − 1

ξNz − 1

∣∣∣∣
=

∣∣∣∣sin(πNz(c2 − c1 + 1)/q)

sin(πNz/q)

∣∣∣∣ .
�

Lemma 2.5.4 [18] For positive integers q and b with q > 1, we have

q−1∑
b=1

| sin(πbn/q)|
| sin(πb/q)|

<
4

π2
q log q + 0.38q + 0.608 + 0.116

d2

q

where d = gcd(b, q).

Copyright c© Ting Gu, 2016.
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Chapter 3 Distribution Properties of Half-`-sequence

3.1 Introduction

FCSRs are important building blocks of pseudorandom sequence generators in stream

ciphers. Since speed and efficiency are significant for pseudorandom sequence gener-

ators, it is vital to have efficient hardware or software implementations for FCSRs.

Lee and Park [43] proposed software implementations for word-based FCSRs in 2011.

They improved the efficiency of software implementation of FCSRs by extending the

size of register cells from 1 bit to k bits where k is the size of words in a given CPU

(e.g. k = 32). Sequences of k bits are produced at every clocking. Their two im-

plementations using full-size words (32 bits) and half-size words (16 bits) require the

connection integer of corresponding FCSRs to be congruent to −1 modulo N where

N = 232 or 216. Let q be the connection integer. When q ≡ −1 (mod N) with

N = 2k and k ≥ 3, 2 is a quadratic residue (QR) modulo q by the law of quadratic

reciprocity [49]. Hence also N = 2k is a QR modulo q. So every power of N is

a QR modulo q. Then the multiplicative order of N modulo q is at most φ(q)/2.

Since N is a quadratic residue modulo q, it follows from eq. (2.6), the exponential

representation of an FCSR sequence, that for every h, either all N−ih (mod q) are

quadratic residues or all are non-quadratic residues. It follows that the period of the

corresponding sequence is at most (q − 1)/2 when q is a prime. We give a definition

of these sequences and call them half-`-sequences [33]. The purpose of this chapter is

to estimate the distribution of the number of occurrences of one symbol, the number

of pairs of symbols with a fixed distance between them, and the number of triples of

consecutive symbols within one period of a half-`-sequence.

Let N = 2k with k ≥ 3 and q = q0 + mN for q0,m ∈ Z with 0 ≤ q0 < N and

gcd(q0, N) = 1. We consider an N -adic sequence s. I.e., s is generated by an FCSR
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Γ whose connection integer is q.

Definition 3.1.1 A sequence s with prime connection integer q is called a half-`-

sequence if the period of s is (q − 1)/2.

Let s = {si}∞i=0 be a half-`-sequence with period T and connection integer q. We

consider the distribution of sn, the distribution of (sn, sn+τ ), and the distribution of

(sn, sn+1, sn+2) for s with 0 < τ < T . For j = 0, 1, · · · , let

uj
q

=
∞∑
i=0

si+jN
i

be the N -adic expression of sequence s starting from sj. Then uj and uj+1 are related

by the equation uj = qsj +Nuj+1. Thus

uj+1 ≡ N−1uj (mod q) (3.1)

and

sj ≡ q−1uj (mod N). (3.2)

From eq. (3.1) it follows that either all uj are quadratic residues modulo q, or all are

non-quadratic residues modulo q. In the sequel, we always suppose they are quadratic

residues modulo q without loss of generality. On the other hand, from eq. (3.2) it

follows that for any v ∈ {0, 1, · · · , N − 1}, the number of occurrences of v in one

period of s equals the number of quadratic residues u with u ≡ qv (mod N).

For 0 ≤ τ < T let

G(τ)
v = {x ∈ Z : 0 ≤ x < q,N τx(modq) ≡ v(modN)}, 0 ≤ v < N.
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Let mv be the largest integer j such that v + jN < q for 0 ≤ v < N . We have

G(0)
v = {v + jN : 0 ≤ j ≤ mv}.

Let Zk = {x ∈ Z : dkq/N τe ≤ x ≤ b(k+ 1)q/N τc} for 0 < τ < T , 0 ≤ k < N τ − 1

and ZNτ−1 = {x ∈ Z : d(N τ − 1)q/N τe ≤ x < q}. We find that G
(τ)
v is the disjoint

union of N τ−1 many Zk with −kq ≡ v (mod N), i.e.,

G(τ)
v =

Nτ−1−1⋃
j=0

Ztv+jN , (3.3)

where 0 ≤ tv < N satisfies tv ≡ −vq−1 (mod N). Also, |Ztv+jN | ≤ dq/N τe <

q/N τ + 1.

Define complex valued functions g
(τ)
v : Z/(q)→ C as

g(τ)
v (x) =

 1, if x ∈ G(τ)
v ,

0, otherwise.

The Fourier transform of g
(τ)
v (x) is given by

ĝ(τ)
v (x) =

1

q

∑
c∈G(τ)

v

ξ−xc.

3.2 Distribution of sn

We consider the distribution of elements in one period of a half-`-sequence s. For

0 ≤ v1 < N , let µ(v1) be the number of integers n with sn = v1 for 0 ≤ n < T .

From eq. (3.2), we know that µ(v1) equals the number of quadratic residues that are

congruent to

(qv1 (mod N)).
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Let Q be the set of quadratic residues. From eq.(3.3), we have

µ(v1) = |Q ∩G(0)
v1
|.

Theorem 3.2.1 For an N-ary half-`-sequence s with prime connection integer q, the

number µ(v1) of occurrences of sn with sn = v1 for 0 ≤ n < T satisfies

∣∣∣∣µ(v1)− q − 1

2N

∣∣∣∣ <
q − 1

2q
+

(q1/2 + 1)

2
·
(

4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
,

where 0 ≤ v1 < N .

Proof . Using Fourier transforms, we have

µ(v1) =
∑
x∈Q

g(0)
v1

(x) =
∑
x∈Q

q−1∑
a=0

ĝ(0)
v1

(a)ξax

=

q−1∑
a=0

ĝ(0)
v1

(a)
∑
x∈Q

ξax.

We first consider the case when a = 0.

ĝ(0)
v1

(0) =
1

q

∑
c∈G(0)

v1

ξ0 =
1

q
|{0 ≤ v1 + jN < q : 0 ≤ j ≤ mv1}| . (3.4)

We want to determine the number of j in eq. (3.4). We have

|{0 ≤ v1 + jN < q : 0 ≤ j ≤ mv1}| =
⌊
q − v1

N

⌋
+ 1.

Using the formula

n1

n2

− 1 <

⌊
n1

n2

⌋
≤ n1

n2

,
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we can get the lower and upper bounds

q − v1

N
<

⌊
q − v1

N

⌋
+ 1 ≤ q − v1

N
+ 1.

Hence we have

1

N
− v1

Nq
< ĝ(0)

v1
(0) ≤ 1

N
+
N − v1

Nq
.

Since when a = 0 we have ∑
x∈Q

ξax =
q − 1

2

then (
1

N
− v1

Nq

)
q − 1

2
< ĝ(0)

v1
(0)
∑
x∈Q

ξax ≤
(

1

N
+
N − v1

Nq

)
q − 1

2
.

Then we consider the case when a 6= 0. We have

∣∣∣∣∣
q−1∑
a=1

ĝ(0)
v1

(a)
∑
x∈Q

ξax

∣∣∣∣∣ ≤
∣∣∣∣∣
q−1∑
a=1

ĝ(0)
v1

(a)

∣∣∣∣∣
∣∣∣∣∣∑
x∈Q

ξax

∣∣∣∣∣
=

∣∣∣∣∣∣
q−1∑
a=1

1

q

∑
c∈G(0)

v

ξ−ac

∣∣∣∣∣∣
∣∣∣∣∣∑
x∈Q

ξax

∣∣∣∣∣
=

1

q

∣∣∣∣∣
q−1∑
a=1

mv1∑
j=0

ξa(v1+jN)

∣∣∣∣∣
∣∣∣∣∣∑
x∈Q

ξax

∣∣∣∣∣ .
Putting everything together, we get

µ(v1) =

q−1∑
a=0

ĝ(0)
v1

(a)
∑
x∈Q

ξax

= ĝ(0)
v1

(0)
∑
x∈Q

ξ0 +

q−1∑
a=1

ĝ(0)
v1

(a)
∑
x∈Q

ξax.
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We have

∣∣∣∣µ(v1)− q − 1

2N

∣∣∣∣
=

∣∣∣∣∣ĝ(0)
v1

(0)
∑
x∈Q

ξ0 +

q−1∑
a=1

ĝ(0)
v1

(a)
∑
x∈Q

ξax − q − 1

2N

∣∣∣∣∣
≤

∣∣∣∣∣ĝ(0)
v1

(0)
∑
x∈Q

ξ0 − q − 1

2N

∣∣∣∣∣+

∣∣∣∣∣
q−1∑
a=1

ĝ(0)
v1

(a)
∑
x∈Q

ξax

∣∣∣∣∣ .
Then we apply the bounds on ĝ

(0)
v1 (0)

∑
x∈Q ξ

ax to get

ĝ(0)
v1

(0)
∑
x∈Q

ξ0 − q − 1

2N
>

(
1

N
− v1

Nq

)
q − 1

2
− q − 1

2N

and

ĝ(0)
v1

(0)
∑
x∈Q

ξ0 − q − 1

2N
≤
(

1

N
+
N − v1

Nq

)
q − 1

2
− q − 1

2N
.

That is,

ĝ(0)
v1

(0)
∑
x∈Q

ξ0 − q − 1

2N
>

(
− v1

Nq

)
q − 1

2

and

ĝ(0)
v1

(0)
∑
x∈Q

ξ0 − q − 1

2N
≤
(
N − v1

Nq

)
q − 1

2
.
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Then we have

∣∣∣∣∣ĝ(0)
v1

(0)
∑
x∈Q

ξ0 − q − 1

2N

∣∣∣∣∣ <
max

{∣∣∣∣(− v1

Nq

)
q − 1

2

∣∣∣∣ , ∣∣∣∣(N − v1

Nq

)
q − 1

2

∣∣∣∣} ,
and hence

∣∣∣∣µ(v1)− q − 1

2N

∣∣∣∣
<

q − 1

2q
+

∣∣∣∣∣
q−1∑
a=1

ĝ(0)
v1

(a)
∑
x∈Q

ξax

∣∣∣∣∣
≤ q − 1

2q
+

1

q

∣∣∣∣∣
q−1∑
a=1

mv1∑
j=0

ξa(v1+jN)

∣∣∣∣∣
∣∣∣∣∣∑
x∈Q

ξax

∣∣∣∣∣
≤ q − 1

2q
+

(q1/2 + 1)

2q
·
(

4

π2
q log q + 0.38q + 0.608 +

0.116

q

)
,

which completes the proof. The last inequality follows from Lemma 2.5.3 and Lemma

2.5.4. �

In [33], we first gave the following bound

∣∣∣∣µ(v1)− q − 1

2N

∣∣∣∣ ≤ 1

2

(
1 + ln

(
q − 1

2

))(
q1/2 + 1

)
for the half-`-sequence in the one symbol case. Wang and Tan presented a new bound

in the one symbol case by using a more tighter bound on 1/ sinx [63]. This new bound

is ∣∣∣∣µ(v)− q − 1

2N

∣∣∣∣ ≤ ( 1

π
ln

(
q − 1

2

)
+ 0.3

)(
q1/2 + 1

)
+
q − 1

2q
.

In this section, we give a tighter bound than that in [33, 63]. In Table 3.1, we

presents the comparison results of our bound with their bounds using the same series
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of connection integers as were used by Wang and Tan [63].

Table 3.1: Comparison of the bounds in one symbol case

Connection integer q bound in [33] bound in [63] our new bound
47 16 10 8
211 43 28 20
401 66 42 30
977 116 73 51
2003 180 114 79
4001 276 175 120
8191 426 270 184
20011 727 460 313
40009 1095 694 470
99991 1874 1188 800
131071 2194 1390 936
398287 4172 2645 1772
662551 5586 3542 2368
956261 6890 4369 2918
1299743 8206 5204 3472
3029711 13263 8412 5598
9999991 25978 16480 10933

2147483647 504997 320643 210591

3.3 Distribution of (sn, sn+τ )

We consider the distribution of (sn, sn+τ ) for s with 0 < τ < T . For 0 ≤ v1, v2 < N ,

let µ(τ ; v1, v2) be the number of integers n with sn = v1 and sn+τ = v2 for 0 ≤ n < T .

From eq. (3.2), we know that µ(τ ; v1, v2) equals the number of quadratic residues of

blocks of length τ + 1 that are congruent to

(qv1 (mod N),b, qv2 (mod N)),

where b is a block of elements of Z/(N). From eq. (3.3), we have

µ(τ ; v1, v2) = |Q ∩G(0)
v2
∩G(τ)

v1
|.
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Theorem 3.3.1 For an N-ary half-`-sequence s with prime connection integer q and

0 ≤ τ < T , the number µ(τ ; v1, v2) of occurrences of (sn, sn+τ ) with sn = v1 and

sn+τ = v2 for 0 ≤ n < T satisfies

∣∣∣∣µ(τ ; v1, v2)− q − 1

2N2

∣∣∣∣ <
(q − 1)(2N τ−2 +N τ−1)

2q

+
(q1/2 + 1)N τ−1

2

(
4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
,

where 0 ≤ v1, v2 < N .

Proof . Using Fourier transforms, we have

µ(τ ; v1, v2) =
∑
x∈Q

g(0)
v2

(x)g(τ)
v1

(x) =
∑
x∈Q

q−1∑
a=0

ĝ(0)
v2

(a)ξax
q−1∑
b=0

ĝ(τ)
v1

(b)ξbx

=

q−1∑
a=0

ĝ(0)
v2

(a)

q−1∑
z=0

ĝ(τ)
v1

(z − a)
∑
x∈Q

ξzx (we use z = a+ b)

=

q−1∑
a=0

1

q

∑
c∈G(0)

v2

ξ−ac
q−1∑
z=0

1

q

∑
d∈G(τ)

v1

ξ−d(z−a)
∑
x∈Q

ξzx

=
1

q2

q−1∑
z=0

∑
x∈Q

ξzx
q−1∑
a=0

mv2∑
j=0

ξa(v2+jN)
∑
d∈G(τ)

v1

ξ−d(z−a)

=
1

q2

q−1∑
z=0

∑
x∈Q

ξzx
mv2∑
j=0

∑
d∈G(τ)

v1

ξ−dz
q−1∑
a=0

ξa(d+v2+jN)

,
1

q2

q−1∑
z=0

∑
x∈Q

ξzxµz(τ ; v1, v2),

where

µz(τ ; v1, v2) =

mv2∑
j=0

∑
d∈G(τ)

v1

ξ−dz
q−1∑
a=0

ξa(d+v2+jN).

We only need to consider the case

d+ v2 + jN ≡ 0 (mod q) for 0 ≤ j ≤ mv2 and d ∈ G(τ)
v1
, (3.5)
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since otherwise
∑q−1

a=0 ξ
a(d+v2+jN) = 0 by (2.8). We want to determine the number of

pairs (j, d) satisfying eq. (3.5). For 0 ≤ i < N τ−1 we define

Di = {0 ≤ j ≤ mv2 : −(v2 + jN) (mod q) ∈ Ztv1+iN}.

All Di’s are disjoint with each other. We can show each j ∈ Di if and only if

d+ v2 + jN ≡ 0 (mod q) for some d ∈ Ztv1+iN ⊂ G
(τ)
v1 and

⌈
q − v2 − b(tv1 + 1 + iN)q/N τc

N

⌉
≤ j ≤

⌊
q − v2 − d(tv1 + iN)q/N τe

N

⌋
. (3.6)

In fact, D =
Nτ−1−1⋃
i=0

Di exactly contains all j satisfying eq. (3.5). We estimate the

number of j, i.e. |D|. Since

|Di| =
⌊
q − v2 − d(tv1 + iN)q/N τe

N

⌋
−
⌈
q − v2 − b(tv1 + 1 + iN)q/N τc

N

⌉
+ 1,

for 0 ≤ i < N τ−1, using the formulas

n1

n2

− 1 <

⌊
n1

n2

⌋
≤ n1

n2

and
n1

n2

≤
⌈
n1

n2

⌉
<
n1

n2

+ 1,

we can get the lower and upper bounds

|Di| >
q − v2 − d(tv1 + iN)q/N τe

N
− 1

−
(
q − v2 − b(tv1 + 1 + iN)q/N τc

N
+ 1

)
+ 1

=
b(tv1 + 1 + iN)q/N τc − d(tv1 + iN)q/N τe

N
− 1

>
1

N

(
(tv1 + 1 + iN)q

N τ
− 1− (tv1 + iN)q

N τ
− 1

)
− 1

=
q

N τ+1
− 2

N
− 1

36



www.manaraa.com

and

|Di| ≤
q − v2 − d(tv1 + iN)q/N τe

N
− q − v2 − b(tv1 + 1 + iN)q/N τc

N
+ 1

=
b(tv1 + 1 + iN)q/N τc − d(tv1 + iN)q/N τe

N
+ 1

≤ (tv1 + 1 + iN)q/N τ − (tv1 + iN)q/N τ

N
+ 1

=
q

N τ+1
+ 1.

Hence |D| =
∑Nτ−1−1

i=0 |Di| is bounded by the following inequalities

q

N2
− 2N τ−2 −N τ−1 < |D| ≤ q

N2
+N τ−1.

We first get a bound for µ0(τ ; v1, v2). We have µ0(τ ; v1, v2) = q|D|, so

q2

N2
− 2qN τ−2 − qN τ−1 < µ0(τ ; v1, v2) ≤ q2

N2
+ qN τ−1.

Then we consider µz(τ ; v1, v2) for z 6= 0.

|µz(τ ; v1, v2)| =

∣∣∣∣∣∣∣
mv2∑
j=0

∑
d∈G(τ)

v1

ξ−dz
q−1∑
a=0

ξa(d+v2+jN)

∣∣∣∣∣∣∣
= q

∣∣∣∣∣∑
j∈D

ξ(v2+jN)z

∣∣∣∣∣ = q

∣∣∣∣∣
Nτ−1−1∑
i=0

∑
j∈Di

ξ(v2+jN)z

∣∣∣∣∣
≤ q

Nτ−1−1∑
i=0

∣∣∣∣∣∑
j∈Di

ξjNz

∣∣∣∣∣ (we use (3.6)).
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Putting everything together, we get

µ(τ ; v1, v2) =
1

q2

q−1∑
z=0

∑
x∈Q

ξzxµz(τ ; v1, v2)

=
q − 1

2q2
µ0(τ ; v1, v2) +

1

q2

q−1∑
z=1

∑
x∈Q

ξzxµz(τ ; v1, v2).

We have

∣∣∣∣µ(τ ; v1, v2)− q − 1

2N2

∣∣∣∣
=

∣∣∣∣∣q − 1

2q2
µ0(τ ; v1, v2) +

1

q2

q−1∑
z=1

∑
x∈Q

ξzxµz(τ ; v1, v2)− q − 1

2N2

∣∣∣∣∣
≤

∣∣∣∣q − 1

2q2
µ0(τ ; v1, v2)− q − 1

2N2

∣∣∣∣+

∣∣∣∣∣ 1

q2

q−1∑
z=1

∑
x∈Q

ξzxµz(τ ; v1, v2)

∣∣∣∣∣ .
Then we apply the bounds on µ0(τ ; v1, v2) to get

q − 1

2q2
µ0(τ ; v1, v2)− q − 1

2N2
>
q − 1

2q2

(
q2

N2
− 2qN τ−2 − qN τ−1

)
− q − 1

2N2

and

q − 1

2q2
µ0(τ ; v1, v2)− q − 1

2N2
≤ q − 1

2q2

(
q2

N2
+ qN τ−1

)
− q − 1

2N2
.

That is,

q − 1

2q2
µ0(τ ; v1, v2)− q − 1

2N2
> −(q − 1)(2N τ−2 +N τ−1)

2q
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and

q − 1

2q2
µ0(τ ; v1, v2)− q − 1

2N2
≤ (q − 1)N τ−1

2q
.

Then we have

∣∣∣∣q − 1

2q2
µ0(τ ; v1, v2)− q − 1

2N2

∣∣∣∣ <
max

{∣∣∣∣−(q − 1)(2N τ−2 +N τ−1)

2q

∣∣∣∣ , ∣∣∣∣(q − 1)N τ−1

2q

∣∣∣∣} ,
and hence

∣∣∣∣µ(τ ; v1, v2)− q − 1

2N2

∣∣∣∣
<

(q − 1)(2N τ−2 +N τ−1)

2q
+

1

q2

∣∣∣∣∣
q−1∑
z=1

∑
x∈Q

ξzxµz(τ ; v1, v2)

∣∣∣∣∣
≤ (q − 1)(2N τ−2 +N τ−1)

2q
+

1

q2

q−1∑
z=1

|µz(τ ; v1, v2)| ·

∣∣∣∣∣∑
x∈Q

ξzx

∣∣∣∣∣
≤ (q − 1)(2N τ−2 +N τ−1)

2q
+
q1/2 + 1

2q2

q−1∑
z=1

|µz(τ ; v1, v2)|

≤ (q − 1)(2N τ−2 +N τ−1)

2q
+

(q1/2 + 1)N τ−1

2q

q−1∑
z=1

∣∣∣∣∣∑
j∈Di

ξjNz

∣∣∣∣∣
≤ (q − 1)(2N τ−2 +N τ−1)

2q

+
(q1/2 + 1)N τ−1

2q
·
(

4

π2
q log q + 0.38q + 0.608 +

0.116

q

)
,

which completes the proof. The last inequality follows from Lemma 2.5.3 and Lemma

2.5.4. �

Note here N τ should be sufficiently smaller than q. Otherwise, the bound in the

above theorem is trivial.
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3.4 Distribution of (sn, sn+1, sn+2)

The idea of previous sections can help us to investigate the number of occurrences

of three consecutive symbols in the half-`-sequence s. According to the definition

of G
(ω)
v , the number of occurrences of three consecutive symbols (sn, sn+1, sn+2) with

sn = v1, sn+1 = v2, and sn+2 = v3, denoted by µ(1, 2; v1, v2, v3), can be obtained by

µ(1, 2; v1, v2, v3) = |Q ∩G(0)
v3
∩G(1)

v2
∩G(2)

v1
|.

Theorem 3.4.1 For an N-ary half-`-sequence s with prime connection integer q,

the number µ(1, 2; v1, v2, v3) of occurrences of (sn, sn+1, sn+2) with sn = v1, sn+1 = v2,

and sn+2 = v3 for 0 ≤ n < T satisfies

∣∣∣∣µ(1, 2; v1, v2, v3)− q − 1

2N3

∣∣∣∣ <
(q − 1)

2q

(
4

N
+ 3

)
+
(
q1/2 + 1

)( 4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
,

where 0 ≤ v1, v2, v3 < N .

40



www.manaraa.com

Proof . Using Fourier transforms, we have

µ(1, 2; v1, v2, v3)

=
∑
x∈Q

g(0)
v3

(x)g(1)
v2

(x)g(2)
v1

(x)

=
∑
x∈Q

q−1∑
a=0

ĝ(0)
v3

(a)ξax
q−1∑
b=0

ĝ(τ)
v2

(b)ξbx
q−1∑
c=0

ĝ(2)
v1

(c)ξcx

=

q−1∑
a=0

ĝ(0)
v3

(a)

q−1∑
b=0

ĝ(1)
v2

(b)

q−1∑
z=0

ĝ(2)
v1

(z − a− b)
∑
x∈Q

ξzx (we use z = a+ b+ c)

=

q−1∑
a=0

1

q

∑
d∈G(0)

v3

ξ−ad
q−1∑
b=0

1

q

∑
e∈G(1)

v2

ξ−be
q−1∑
z=0

1

q

∑
f∈G(2)

v1

ξ−f(z−a−b)
∑
x∈Q

ξzx

=
1

q3

q−1∑
z=0

∑
x∈Q

ξzx
q−1∑
a=0

mv3∑
j=0

ξa(v3+jN)

q−1∑
b=0

∑
e∈G(1)

v2

ξ−be
∑
f∈G(2)

v1

ξ−f(z−a−b)

=
1

q3

q−1∑
z=0

∑
x∈Q

ξzx
mv3∑
j=0

∑
e∈G(1)

v2

∑
f∈G(2)

v1

ξ−fz
q−1∑
b=0

ξb(f−e)
q−1∑
a=0

ξa(v3+jN+f)

,
1

q3

q−1∑
z=0

∑
x∈Q

ξzxµz(1, 2; v1, v2, v3),

where

µz(1, 2; v1, v2, v3) =

mv3∑
j=0

∑
e∈G(1)

v2

∑
f∈G(2)

v1

ξ−fz
q−1∑
b=0

ξb(f−e)
q−1∑
a=0

ξa(v3+jN+f).

We only need to consider the case

v3 + jN + f ≡ 0 (mod q) and f − e ≡ 0 (mod q), (3.7)
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for 0 ≤ j ≤ mv3 , e ∈ G
(1)
v2 , and f ∈ G(2)

v1 , since otherwise by eq. (2.8) we have

q−1∑
b=0

ξb(f−e)
q−1∑
a=0

ξa(v3+jN+f) = 0.

We want to determine the number of pairs (j, f) satisfying eq. (3.7). From eq.

(3.3) with ω = 1, since −q < −(v3 + jN) ≤ 0 such j must satisfy both

⌈
tv2q

N

⌉
≤ q − (v3 + jN) ≤

⌊
(tv2 + 1)q

N

⌋

and ⌈
(tv1 + iN)q

N2

⌉
≤ q − (v3 + jN) ≤

⌊
(tv1 + 1 + iN)q

N2

⌋
, 0 ≤ i < N.

We derive that j is an element of

T =

{
j :

⌈
q − v3 − b(tv2 + 1)q/Nc

N

⌉
≤ j ≤

⌊
q − v3 − dtv2q/Ne

N

⌋}

and

Ei =

{
j :

⌈
q − v3 − b(tv1 + 1 + iN)q/N2c

N

⌉
≤ j

≤
⌊
q − v3 − d(tv1 + iN)q/N2e

N

⌋}
,

for 0 ≤ i < N . We find that q/N2−2/N −1 < |T | ≤ q/N2 +1 and q/N3−2/N −1 <

|Ei| ≤ q/N3 + 1. On the other hand, we get that |T | is smaller than the right bound

of Ei minus the left bound of Ei+1, but larger than the right bound of Ei minus the

right bound of Ei+1. So we conclude

D = [1,mv3 ]
⋂

T
⋂

(
N−1⋃
i=0

Ei)

contains at most two disjoint intervals, say A and B, of integers. In fact, D = A∪B
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contains all j satisfying eq. (3.7). We get

q

N3
− 4

N
− 3 < |A|+ |B| ≤ q

N3
+ 2.

Hence we can get

q

N3
− 4

N
− 3 < |D| ≤ q

N3
+ 2.

We first get a bound for µ0(1, 2; v1, v2, v3). We have

µ0(1, 2; v1, v2, v3) = q2|D|

and

q2

(
q

N3
− 4

N
− 3

)
< µ0(1, 2; v1, v2, v3) ≤ q2

( q

N3
+ 2
)
.

Then we consider µz(1, 2; v1, v2, v3) for z 6= 0.

|µz(τ ; v1, v2)| =

∣∣∣∣∣∣∣
mv3∑
j=0

∑
e∈G(1)

v2

∑
f∈G(2)

v1

ξ−fz
q−1∑
b=0

ξb(f−e)
q−1∑
a=0

ξa(v3+jN+f)

∣∣∣∣∣∣∣
= q2

∣∣∣∣∣∑
j∈D

ξ(v3+jN)z

∣∣∣∣∣ = q2

∣∣∣∣∣ ∑
j∈A∪B

ξjNz

∣∣∣∣∣ .
Putting everything together, we get

µ(1, 2; v1, v2, v3)

=
1

q3

q−1∑
z=0

∑
x∈Q

ξzxµz(1, 2; v1, v2, v3)

=
q − 1

2q3
µ0(1, 2; v1, v2, v3) +

1

q3

q−1∑
z=1

∑
x∈Q

ξzxµz(1, 2; v1, v2, v3).
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We have

∣∣∣∣µ(1, 2; v1, v2, v3)− q − 1

2N3

∣∣∣∣
=

∣∣∣∣∣q − 1

2q3
µ0(1, 2; v1, v2, v3) +

1

q3

q−1∑
z=1

∑
x∈Q

ξzxµz(1, 2; v1, v2, v3)− q − 1

2N3

∣∣∣∣∣
≤

∣∣∣∣q − 1

2q3
µ0(1, 2; v1, v2, v3)− q − 1

2N3

∣∣∣∣+

∣∣∣∣∣ 1

q3

q−1∑
z=1

∑
x∈Q

ξzxµz(1, 2; v1, v2, v3)

∣∣∣∣∣ .
Then we apply the bounds on µ0(τ ; v1, v2) to get

q − 1

2q3
µ0(1, 2; v1, v2, v3)− q − 1

2N3
>
q − 1

2q3
q2

(
q

N3
− 4

N
− 3

)
− q − 1

2N3

and

q − 1

2q3
µ0(1, 2; v1, v2, v3)− q − 1

2N3
≤ q − 1

2q3
q2
( q

N3
+ 2
)
− q − 1

2N3
.

That is,

q − 1

2q3
µ0(1, 2; v1, v2, v3)− q − 1

2N3
> −(q − 1)

2q

(
4

N
+ 3

)

and

q − 1

2q3
µ0(1, 2; v1, v2, v3)− q − 1

2N3
≤ q − 1

q
.

Then we have

∣∣∣∣q − 1

2q3
µ0(1, 2; v1, v2, v3)− q − 1

2N3

∣∣∣∣ <
max

{∣∣∣∣−(q − 1)

2q

(
4

N
+ 3

)∣∣∣∣ , ∣∣∣∣q − 1

q

∣∣∣∣} ,
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and hence

∣∣∣∣µ(1, 2; v1, v2, v3)− q − 1

2N3

∣∣∣∣
<

(q − 1)

2q

(
4

N
+ 3

)
+

1

q3

∣∣∣∣∣
q−1∑
z=1

∑
x∈Q

ξzxµz(1, 2; v1, v2, v3)

∣∣∣∣∣
≤ (q − 1)

2q

(
4

N
+ 3

)
+

1

q3

q−1∑
z=1

|µz(1, 2; v1, v2, v3)| ·

∣∣∣∣∣∑
x∈Q

ξzx

∣∣∣∣∣
≤ (q − 1)

2q

(
4

N
+ 3

)
+
q1/2 + 1

2q3

q−1∑
z=1

|µz(1, 2; v1, v2, v3)|

≤ (q − 1)

2q

(
4

N
+ 3

)
+

(q1/2 + 1)

2q

q−1∑
z=1

∣∣∣∣∣ ∑
j∈A∪B

ξjNz

∣∣∣∣∣
≤ (q − 1)

2q

(
4

N
+ 3

)
+

(q1/2 + 1)

2q
· 2
(

4

π2
q log q + 0.38q + 0.608 +

0.116

q

)
,

which completes the proof. The last inequality follows from Lemma 2.5.3 and Lemma

2.5.4. �

3.5 A Sharper Bound When N = 2

Theorem 3.5.1 Let a = a0, a1, a2, ... be a binary half-`-sequence with q ≡ 1 mod 8

and q an odd prime. Then a is balanced.

Proof . Since q ≡ 1 mod 8 and q is an odd prime, the order of 2 is (q − 1)/2. Then

we have 2(q−1)/2 ≡ 1 mod q. As a result, 2(q−1)/4 ≡ ±1 mod q. Because the order of

2 is (q − 1)/2, 2(q−1)/4 6≡ 1 mod q, we have 2(q−1)/4 ≡ −1 mod q.

There is an integer h so that for all j ≥ 0 we have

aj ≡ 2−jh mod q mod 2.
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Consider aj where j ∈ [0, (q − 1)/2). Then we have

aj ≡ 2−jh mod q mod 2.

and

a q−1
4

+j ≡ 2−( q−1
4

+j)h mod q mod 2

≡
(

2−
q−1
4 2−j

)
h mod q mod 2

≡ −2−jh mod q mod 2

≡
(
q − 2−jh

)
mod q mod 2,

which is the complementary bit to aj. So the first half of half-`-sequence a is the

bit-wise complement of its second half. Then the numbers of 1’s and 0’s in a are

equal. So a is balanced.

�

3.6 Experimental Results

In this section we analyze the imbalance properties of half-`-sequences by showing how

tight the bounds in Theorem 3.2.1, 3.3.1 and 3.4.1 are using experiment results. It is

impractical to investigate half-`-sequences with big qs and N = 232 or 216 as discussed

in Lee and Park’s paper by experiments. As a result, we choose half-`-sequences with

smaller Ns and qs for investigation.

3.6.1 Finding Satisfactory Connection Integers

To investigate the imbalance properties of half-`-sequences, we need to find satis-

factory connection integers for FCSRs to generate half-`-sequences. The condition
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on connection integers to generate an N -ary half-`-sequences is similar to that of an

N -ary `-sequences, both of which relate to the order of N modulo q. Let’s first look

at the the condition on the connection integer to generate an N -ary `-sequence. Let

q be a prime number. The condition on the connection integer q for the generation

of an N -ary `-sequence is that the order of N modulo q is q − 1. In other words, N

is primitive modulo q.

Lemma 3.6.1 Let p, q be prime numbers with q = 2p + 1. N is primitive modulo q

if and only if Np 6≡ 1 (mod q) and N2 6≡ 1 (mod q).

Indeed, since ordq(N)|ϕ(q) = q − 1 = 2p.

Similarly, we need ordq(N) = (q − 1)/2 for an N -ary half-`-sequence according

to the definition of N -ary half-`-sequence 3.1.1. That is, N (q−1)/2 ≡ 1 (mod q) or

the Legendre symbol
(
N
q

)
= 1. In the experiment, we generated some connection

integers q of the form

• q = 2p+ 1 with p and q prime; and

• q ≡ −1 (mod N).

The sequences generated by an FCSR with those connection integers are half-`-

sequences or `-sequences. Indeed, it is possible that either N (q−1)/2 ≡ 1 (mod q) or

N q−1 ≡ 1 (mod q). Note that when N ≥ 23, q ≡ −1 (mod 8). Then
(

2
q

)
= 1.

Therefore, (
N

q

)
=

(
2k

q

)
=

((
2

q

))k
= 1,

or N (q−1)/2 ≡ 1 (mod q). Since p = (q − 1)/2 is a prime, ordq(N) = (q − 1)/2.

Hence the sequences generated in this way are all half-`-sequences. These may not

be the only half-`-sequences, but they are just the easiest to find. We use the sieve

of Eratosthenes algorithm [9] to find all the primes numbers satisfying the conditions
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above. The sieve of Eratosthenes algorithm finds all prime numbers up to a given

limit. There are two ways to generate the half-`-sequence based on a specific q. One

uses eq. (2.2) with initial states and carry. The other one uses the algebraic expression

in eq. (2.6). In our experiments, we used the algebraic expression to generate the

half-`-sequences.

3.6.2 One Symbol Case

In this section we analyze the imbalance properties of half-`-sequences by showing

how tight the bounds are in the one symbol case.

Let

µ
′
(v) =

∣∣∣∣µ(v)− q − 1

2N

∣∣∣∣ , 0 ≤ v < N,

σv(q) =
q − 1

2q
+

(q1/2 + 1)

2
·
(

4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
and

δv(q) =
max{µ′(v) : 0 ≤ v < N}

σv(q)
.

The quantity µ
′
(v) is the difference between the number of occurrences of v in

one period of a half-`-sequence and the average number of occurrences. The smaller

δv(q) is, the more balanced the sequence is. Ideally, for a pseudo-random sequence,

we would like δv(q) to be close to zero. We generated the sequences for corresponding

q and calculated δv(q) for these qs. We would like to see how δv(q) changes as

the connection integers increase for a particular N . We have done experiments for

N = 8, 16 and 32. For each value of N , we generated δv(q) with FCSR sizes 2, 3 and

4. Note that if the size of an FCSR is m, then the corresponding connection integer

q ∈ (Nm, Nm+1). Fig. 3.1 shows that δv(q) for N = 8 with FCSR size 2, 3 and 4 is in

the range (0.05, 0.35). Fig. 3.2 shows that δv(q) for N = 16 with FCSR size 2, 3 and

4 is in the range (0.04, 0.3). Fig. 3.3 shows that δv(q) for N = 32 with FCSR size
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2, 3 and 4 is in the range (0.03, 0.25). We don’t see an increase or decrease pattern

as q increases from the three figures. We don’t know a way to find the best qs if

the period is large enough to be useful. µ
′
(v) is the product of δv(q) and σv(q). As

the connection integer q increases, σv(q) will increase accordingly. Thus µ
′
(v) will

increase accordingly.

Figure 3.1: Maximum ratio when N = 8 in one symbol case

3.6.3 Two Consecutive Symbol Case

In this section we analyze the imbalance properties of half-`-sequences by showing

how tight the bounds are in the two consecutive symbol case. This is a special case

when τ = 1 in Theorem 3.3.1.

Let

µ
′
(v1, v2) =

∣∣∣∣µ(v1, v2)− q − 1

2N2

∣∣∣∣ , 0 ≤ v1, v2 < N,

σv1,v2(q) =
(q − 1)

2q

(
2

N
+ 1

)
+

(q1/2 + 1)

2

(
4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
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Figure 3.2: Maximum ratio when N = 16 in one symbol case

and

δv1,v2(q) =
max{µ′(v1, v2) : 0 ≤ v1, v2 < N}

σv1,v2(q)
.

The quantity µ
′
(v1, v2) is the difference between the number of occurrences of

v1, v2 in one period of a half-`-sequence and the average number of occurrences. The

smaller δv1,v2(q) is, the more balanced the sequence is. Ideally, for a pseudorandom

sequence, we would like δv1,v2(q) to be close to zero. We generated the sequences

for corresponding q and calculated δv1,v2(q) for these qs. We would like to see how

δv1,v2(q) changes as the connection integers increase for a particular N . We have done

experiments for N = 8, 16 and 32. For each value of N , we generated δv1,v2(q) with

FCSR sizes 2, 3 and 4. Note that if the size of an FCSR is m, then the corresponding

connection integer q ∈ (Nm, Nm+1). Fig. 3.4 shows that δv1,v2(q) for N = 8 with

FCSR size 2, 3 and 4 is in the range (0.03, 0.17). Fig. 3.5 shows that δv1,v2(q) for

N = 16 with FCSR size 2, 3 and 4 is in the range (0.02, 0.12). Fig. 3.6 shows that
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Figure 3.3: Maximum ratio when N = 32 in one symbol case

δv1,v2(q) for N = 32 with FCSR size 2, 3 and 4 is in the range (0.01, 0.06). We don’t

see an increase or decrease pattern as q increases from the three figures. We don’t

know a way to find the best qs if the period is large enough to be useful. µ
′
(v1, v2) is

the product of δv1,v2(q) and σv1,v2(q). As the connection integer q increases, σv1,v2(q)

will increase accordingly. Thus µ
′
(v1, v2) will increase accordingly.

3.6.4 Three Consecutive Symbol Case

In this section we analyze the imbalance properties of half-`-sequences by showing

how tight the bounds are in the three consecutive symbol case.

Let

µ
′
(v1, v2, v3) =

∣∣∣∣µ(v1, v2, v3)− q − 1

2N3

∣∣∣∣ , 0 ≤ v1, v2, v3 < N,

σv1,v2,v3(q) =
(q − 1)

2q

(
4

N
+ 3

)
+
(
q1/2 + 1

)( 4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
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Figure 3.4: Maximum ratio when N = 8 in two consecutive symbol case

and

δv1,v2,v3(q) =
max{µ′(v1, v2, v3) : 0 ≤ v1, v2, v3 < N}

σv1,v2,v3(q)
.

The quantity µ
′
(v1, v2, v3) is the difference between the number of occurrences

of v in one period of a half-`-sequence and the average number of occurrences. The

smaller δv1,v2,v3(q) is, the more balanced the sequence is. Ideally, for a pseudo-random

sequence, we would like δv1,v2,v3(q) to be close to zero. We generated the sequences

for corresponding q and calculated δv1,v2,v3(q) for these qs. We would like to see

how δv1,v2,v3(q) changes as the connection integers increase for a particular N . We

have done experiments for N = 8, 16 and 32. For each value of N , we generated

δv1,v2,v3(q) with FCSR sizes 2, 3 and 4. Note that if the size of an FCSR is m, then

the corresponding connection integer q ∈ (Nm, Nm+1). Fig. 3.7 shows that δv1,v2,v3(q)

for N = 8 with FCSR size 2, 3 and 4 is in the range (0.008, 0.05). Fig. 3.8 shows

that δv1,v2,v3(q) for N = 16 with FCSR size 2, 3 and 4 is in the range (0.002, 0.17).

Fig. 3.9 shows that δv1,v2,v3(q) for N = 32 with FCSR size 2, 3 and 4 is in the range
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Figure 3.5: Maximum ratio when N = 16 in two consecutive symbol case

(0.0006, 0.0075). We don’t see an increase or decrease pattern as q increases from

the three figures. We don’t know a way to find the best qs if the period is large

enough to be useful. µ
′
(v1, v2, v3) is the product of δv1,v2,v3(q) and σv1,v2,v3(q). As the

connection integer q increases, σv1,v2,v3(q) will increase accordingly. Thus µ
′
(v1, v2, v3)

will increase accordingly.

3.7 Concluding Remarks

In this chapter, we show some nice features of the distribution of sn, (sn, sn+τ ) and

(sn, sn+1, sn+2) in one period of a half-`-sequence. We discuss a special binary case

half-`-sequence which is balanced. Our methods for investigating the distribution

properties of half-`-sequences can be extended to investigation of distribution prop-

erties of sequences whose period is φ(q)/2k with k ≥ 2, e.g., quarter-`-sequence when

k = 2. We can get similar bounds but with larger constants due to the polynomial

degree increase in Weil’s theorem. The implementation efficiency for these sequences
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Figure 3.6: Maximum ratio when N = 32 in two consecutive symbol case

might also decrease, since the size of the FCSR must increase to achieve the same

period.

Copyright c© Ting Gu, 2016.
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Figure 3.7: Maximum ration when N = 8 in three consecutive symbol case

Figure 3.8: Maximum ration when N = 16 in three consecutive symbol case

55



www.manaraa.com

Figure 3.9: Maximum ratio when N = 32 in three consecutive symbol case
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Chapter 4 Statistical Properties of Pseudorandom Sequences

4.1 Introduction

In this chapter, we investigate various statistical properties of sequences related to

FCSRs. First, we introduce the distribution properties of N -ary sequences that com-

bine two half-`-sequences using addition modulo N . We give bounds on the number

of occurrences of two symbols with a fixed distance between them in an `-sequence

and obtain conditions on the connection integer that guarantee the distribution is

highly uniform. Furthermore, we discuss the autocorrelations of half-`-sequences.

4.2 Distribution Properties of Combined Half-`-sequences

Summation combiners [56] are stream ciphers that combine two or more binary m-

sequences using addition-with-carry operations. They have been studied during the

1980’s due to their speed and simple construction in hardware implementation. The

period of the resulting combined sequence reaches approximately the product of the

periods of the constituent sequences. The linear span of the resulting sequence was

known to approach its period. However, the 2-adic complexity of the resulting se-

quence is no more than the sum of the 2-adic complexities of the constituent se-

quences. In 2006, Goresky and Klapper considered the case of combining two binary

FCSR sequences using binary addition [29]. In particular, they considered combining

two distinct `-sequences using addition modulo two. Indeed, even though `-sequences

have good distribution properties, linear complexities and correlation properties, they

themselves should never be used as keystreams because of the existence of the 2-adic

rational approximation algorithm [30]. In this section we consider a similar problem

by combining two distinct half-`-sequences. We investigate the period and shifted
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properties of combined half-`-sequences. Distribution properties of combined half-

`-sequences are presented. At the end of this section we show some experimental

results about combined half-`-sequences.

4.2.1 Period and Shift Properties

Goresky and Klapper investigated the period of sequences that combine two binary

FCSR sequences using binary addition [29]. Let Z/(N) be the residue ring modulo

N . For all a, b, c ∈ Z/(N), if a+ b (mod N) = a+ c (mod N), then b (mod N) = c

(mod N). It is straightforward to derive the following lemma.

Lemma 4.2.1 Let a = {ai}∞i=0 be a periodic FCSR sequence of (minimal) period T1

with each ai ∈ Z/(N), and let b = {bi}∞i=0 be a periodic FCSR sequence of (minimal)

period T2 with each bi ∈ Z/(N). Let c = {ci}∞i=0 be a sequence with ci = ai + bi

(mod N) for each i. Suppose that for every prime p, the largest power of p that

divides T1 is not equal to the largest power of p that divides T2. Then c is periodic

and the period of c is lcm(T1, T2), the least common multiple of T1 and T2.

We consider combining two distinct N -ary half-`-sequences a = {ai}∞i=0 and

b = {bi}∞i=0 using addition modulo N to obtain a sequence c = {ci}∞i=0 where

ai, bi, ci ∈ Z/(N). Suppose a is a half-`-sequence that is generated by an FCSR

with connection integer q1 and that b is a half-`-sequence that is generated by an

FCSR with connection integer q2. Then the period T1 of sequence a is (q1 − 1)/2

and the period T2 of sequence b is (q2 − 1)/2. We can easily gain the period of the

sequence that combines two N -ary half-`-sequences using modular addition.

Theorem 4.2.1 Let a = {ai}∞i=0 and b = {bi}∞i=0 be N-ary half-`-sequences with

connection integers q1 and q2 respectively. Suppose that for every prime p, the largest

power of p that divides (q1 − 1)/2 is not equal to the largest power of p that divides
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(q2− 1)/2.Then the sequence c = {ci}∞i=0 obtained by ci = ai + bi (mod N) has period

(q1 − 1)(q2 − 1)

2 gcd(q1 − 1, q2 − 1)
.

Proof . According to Lemma 4.2.1, the period of c is the least common multiple of

(q1 − 1)/2 and (q2 − 1)/2, which is

(q1 − 1)(q2 − 1)

4 gcd((q1 − 1)/2, (q2 − 1)/2)
=

(q1 − 1)(q2 − 1)

2 gcd(q1 − 1, q2 − 1)
.

�

Lemma 4.2.2 Let a = {ai}∞i=0 and b = {bi}∞i=0 be binary half-`-sequences with con-

nection integers q1 and q2 respectively. Suppose that one of the connection integers

is congruent to 1 (mod 8). Without loss of generality, let q1 ≡ 1 (mod 8). Let

c = {ci}∞i=0 be a sequence with ci = ai + bi (mod N). Suppose that q2−1
gcd(q1−1,q2−1)

is

odd and q1−1
gcd(q1−1,q2−1)

is even. Then the second half of c is the complement of the first

half.

Proof . The second half of a period of the sequence a is the complement of the first

half and the same is true for the sequence b according to Theorem 3.5.1. Let T be

the period of c. Then

T

2
=
q1 − 1

4

q2 − 1

gcd(q1 − 1, q2 − 1)
=
q2 − 1

4

q1 − 1

gcd(q1 − 1, q2 − 1)
.

By symmetry therefore we have ai+T/2 = ā and bi+T/2 = bi whenever 0 ≤ i < T/2.

Here ā denotes the complement of ai ∈ Z/(2). Hence,

ci+T/2 = āi + bi (mod 2) = c̄i

which completes the proof.
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�

Lemma 4.2.3 Let a = {ai}∞i=0 and b = {bi}∞i=0 be binary half-`-sequences with

connection integers q1 ≡ 1 (mod 8) and q2 ≡ 1 (mod 16) respectively. Let b(τ) =

(bτ , bτ+1, · · · ) be the shift of the sequence b by τ . If gcd((q1 − 1)/2, (q2 − 1)/2) = 4

and τ = 4k for some k, then the sequence d = a + b(τ) (mod 2) is a shift of the

sequence c = a + b (mod 2).

Proof . Since τ = 4k for some k and gcd((q1 − 1)/2, (q2 − 1)/2) = 4, we have that

(q2−1)/4−τ is divisible by gcd((q1−1)/2, (q2−1)/2). As a result, there exist integers

m and n such that

q2 − 1

4
− τ = m

q1 − 1

2
− nq2 − 1

2
.

That is

m
q1 − 1

2
=
q2 − 1

4
− τ + n

q2 − 1

2
.

Therefore, for all j,

dj+m(q1−1)/2 = aj+m(q1−1)/2 + b
(τ)
j+(q2−1)/4−τ+n(q2−1)/2 (mod 2)

= aj+m(q1−1)/2 + bj+(q2−1)/4+n(q2−1)/2 (mod 2)

= aj + bj+(q2−1)/4 (mod 2)

= aj + b̄j (mod 2)

= c̄j.

By Lemma 4.2.2 the sequence c is a shift of its complement, so d is also a shift of

c.

�

Now we return to the general case of N -ary half-`-sequences.

60



www.manaraa.com

Lemma 4.2.4 Let a = {ai}∞i=0 and b = {bi}∞i=0 be N-ary half-`-sequences with con-

nection integers q1 and q2 respectively. Let b(1) = (b1, b2, · · · ) be a shift of the sequence

b by 1. If gcd((q1 − 1)/2, (q2 − 1)/2) = 1, then the sequence d = a + b(1) (mod N)

is a shift of the sequence c = a + b (mod N).

Proof . Since gcd((q1 − 1)/2, (q2 − 1)/2) = 1, we have that (q2 − 1)/2− 1 is divisible

by gcd((q1 − 1)/2, (q2 − 1)/2). As a result, there exist integers m and n such that

q2 − 1

2
− 1 = m

q1 − 1

2
− nq2 − 1

2
.

That is

m
q1 − 1

2
= (n+ 1)

q2 − 1

2
− 1.

Therefore, for all j,

dj+m(q1−1)/2 = aj+m(q1−1)/2 + b
(1)
j+(n+1)(q2−1)/2−1 (mod N)

= aj + bj (mod N)

= cj.

�

4.2.2 Distribution of Combined Half-`-sequences

Theorem 4.2.2 Let a = {ai}∞i=0 and b = {bi}∞i=0 be N-ary half-`-sequences with

connection integers q1 and q2 respectively. Let c = a + b (mod N) with period T .

For 1 ≤ k < T , let Ma(x̄) be the number of occurrences of k consecutive symbols

x̄ = (x1, x2, · · · , xk) in a and Mb(ȳ) be the number of occurrences of k consecutive

symbols ȳ = (y1, y2, · · · , yk) in b where xi, yi ∈ Z/(N) with 1 ≤ i ≤ k. Let Mc(v̄)

be the number of occurrences of v̄ = (v1, v2, · · · , vk) in c where vi ∈ Z/(N). If
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gcd((q1 − 1)/2, (q2 − 1)/2) = 1, then

Mc(v̄) =
∑

x̄∈(Z/(N))k

Ma(x̄) ·Mb(v̄ − x̄ (mod N)).

Proof . From Lemma 4.2.4, we know that a + b(1) (mod N) is a shift of c. By

induction, we can see that d = a + b(τ) (mod N) is a shift of c for 1 ≤ τ < T .

If we count the occurrences of the length k block v̄ in both c and d, then we will

have twice the number of occurrences of the length k block in c. We have c = a + b

(mod N) and each symbol in a is matched with each symbol in b. Thus, to count

the occurrences of v̄ in c, we want to count the number of pairs (an occurrence of

x̄ in a, an occurrence of v̄ − x̄ (mod N) in b). Thus we sum over all satisfactory

blocks x̄ and v̄ − x̄ (mod N) the number of occurrences of x̄ in a times the number

of occurrences of v̄ − x̄ (mod N) in b, that is,

Mc(v̄) =
∑

x̄∈(Z/(N))k

Ma(x̄) ·Mb(v̄ − x̄ (mod N)).

�

Corollary 4.2.1 Let a = {ai}∞i=0 and b = {bi}∞i=0 be binary half-`-sequences with

connection integers q1 and q2 respectively. Let c = a + b (mod N). If the connection

integer of one of the two half-`-sequences is congruent to 1 (mod 8), i.e. q1 ≡ 1

(mod 8) and gcd((q1 − 1)/2, (q2 − 1)/2) = 1, then c is balanced.

Proof . Let A1 and A0 be the number of occurrences 1s and 0s in a respectively. Then

A1 = A0, since q1 ≡ 1 (mod 8) according to Theorem 3.5.1. Let B1 and B0 be the

number of occurrences 1s and 0s in b respectively. If gcd((q1 − 1)/2, (q2 − 1)/2) = 1,

then

• the number of occurrences 1s in c = A1 ∗B0 + A0 ∗B1 = A1 ∗ (B0 +B1);
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• the number of occurrences 0s in c= A1 ∗B1 + A0 ∗B0 = A1 ∗ (B0 +B1);

which completes the proof. �

Theorem 4.2.3 Let a = {ai}∞i=0 and b = {bi}∞i=0 be N-ary half-`-sequences with

connection integers q1 ≡ ±1 (mod 8) and q2 ≡ ±1 (mod 8) respectively. Let µ(v)

be the number of occurrences of v in c = a + b (mod N) where 0 ≤ v < N . If

gcd((q1 − 1)/2, (q2 − 1)/2) = 1, then

∣∣∣∣µ(v)− (q1 − 1)(q2 − 1)

4N

∣∣∣∣ ≤ N · σ(q1) · σ(q2),

where σ(q) is the maximum deviation of the number of occurrences of one symbol

from the average number of occurrences within one period of a half-`-sequence with

connection integer q.

Proof . Let ti = (qi − 1)/(2N), the average number of occurrences of a symbol in a

and b, and for 0 ≤ v < N let cv = Av−t1 and dv = Bv−t2. Then
∑

v cv =
∑

v dv = 0.

Therefore for 0 ≤ w < N ,

∑
u+v=w

AuBv =
∑

u+v=w

(t1 + cu)(t2 + dv)

= Nt1t2 + (
∑

0≤u<N

cu)t2 + (
∑

0≤v<N

dv)t1 +
∑

u+v=w

cudv

=
(q1 − 1)(q2 − 1)

4N
+
∑

u+v=w

cudv.

Thus

|µ(w)− (q1 − 1)(q2 − 1)

4N
| ≤

∑
u+v=w

|cudv| ≤ N · σ(q1) · σ(q2).

In particular, σ(qi) is bound by Theorem 3.2.1. �
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4.2.3 Experimental Results

In this section, we show experimental results on the combined half-`-sequences based

on different pairs of connection integers q1 and q2.

Let θ = gcd((q1 − 1)/2, (q2 − 1)/2) and

µ
′
(v) =

∣∣∣∣µ(v)− (q1 − 1)(q2 − 1)

4Nθ

∣∣∣∣ , 0 ≤ v < N.

The quantity µ
′
(v) is the difference between the number of occurrences of v in one

period of a combined half-`-sequence and the average number of occurrences. Let

γ = max{µ′(v) : 0 ≤ v < N}.

Recall that our bound for σ(q) when q is the connection integer of a half-`-sequence

is

σ(q) =
q − 1

2q
+

(q1/2 + 1)

2
·
(

4

π2
log q + 0.38 +

0.608

q
+

0.116

q2

)
.

From Theorem 4.2.3, we get the bound for a combined half-`-sequence based q1 and

q2 when θ = 1. We denote it as

ζ = Nσ(q1)σ(q2).

We investigate combined half-`-sequences when N = 2, 4 and 8. Table 4.1 shows

the distribution of combined half-`-sequences when N = 2. Notice that when one of

the connection integers of the two binary half-`-sequences is congruent to 1 (mod 8),

we have γ = 0, which means the combined sequence is balanced. For example, in

Table 4.1 when q1 = 41 ≡ 1 (mod 8) we have γ = 0. This result is consistent with

the result shown in Corollary 4.2.1. However, when N = 8, γ can never be 0 since

the connection integers must be congruent to −1 (mod N). From Table 4.1, 4.2 and

4.3, we can see that γ < ζ when θ = 1. This result is consistent with what we find

in Theorem 4.2.3. The fact that γ < ζ is not restricted when θ = 1. Actually when
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θ 6= 1, e.g., θ = 11 with q1 = 23 and q2 = 199 we have γ < ζ.

4.3 Distribution of (sn, sn+τ ) in an `-sequence

Using similar techniques as for half-`-sequences in Chapter 3, we have the following

theorem for the distribution of (sn, sn+τ ) in one period of an `-sequence s.

Theorem 4.3.1 For an N-ary `-sequence s with prime connection integer q and

0 ≤ τ < T , the number µ(τ ; v1, v2) of occurrences of (sn, sn+τ ) with sn = v1 and

sn+τ = v2 for 0 ≤ n < T satisfies

∣∣∣∣µ(τ ; v1, v2)− q − 1

N2

∣∣∣∣ ≤ N τ−1

(
1 + ln

(
q − 1

2

))
.

where 0 ≤ v1, v2 < N .

However, we can get a sharper bound using another method according to Lemma

4.3.1 below.

Lemma 4.3.1 [30] Let s be an N-ary `-sequence based on connection integer q with

q an odd prime. Then the number Ms(b) of occurrences of any block b of size τ

within a single period of s is

⌊ q

N τ

⌋
≤Ms(b) ≤

⌊ q

N τ

⌋
+ 1.

Theorem 4.3.2 For an N-ary `-sequence s with prime connection integer q and

0 ≤ τ < T , the number µ(τ ; v1, v2) of integers n with sn = v1 and sn+τ = v2 for

0 ≤ n < T satisfies ∣∣∣∣µ(τ ; v1, v2)− q − 1

N2

∣∣∣∣ < N τ−1 +N2.
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Table 4.1: Distribution of combined half-`-sequences when N = 2

q1 q2 θ γ ζ
23 41 1 0 80
23 47 1 8 87
23 71 1 11 111
23 79 1 8 119
23 97 1 0 135
23 103 1 8 140
23 137 1 0 166
23 167 1 17 188
23 191 1 20 204
23 193 1 0 205
23 199 11 6 209
23 239 1 23 233
23 263 1 20 248
23 271 1 17 252
23 311 1 29 274
23 313 1 0 275
23 359 1 29 299
23 367 1 14 303
23 383 1 26 312
23 401 1 0 320
23 409 1 0 324
41 47 1 0 122
41 71 5 0 157
41 79 1 0 167
41 97 4 0 190
41 103 1 0 197
41 137 4 0 234
41 167 1 0 264
41 191 5 0 287
41 193 4 0 289
41 199 1 0 294
41 239 1 0 329
41 263 1 0 349
41 271 5 0 355
41 311 5 0 387
41 313 4 30 388
41 359 1 0 422
41 367 1 0 428
41 383 1 0 439
41 401 20 0 451
41 409 4 30 457
47 71 1 18 170
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Table 4.2: Distribution of combined half-`-sequences when N = 4

q1 q2 θ γ ζ
23 47 1 7 174
23 71 1 10 223
23 79 1 7 238
23 103 1 7 280
23 167 1 16 376
23 191 1 19 408
23 199 11 8 418
23 239 1 22 467
23 263 1 19 496
23 271 1 16 505
23 311 1 28 549
23 359 1 28 599
23 367 1 13 607
23 383 1 25 624
47 71 1 17 341
47 79 1 12 364
47 103 1 12 428
47 167 1 27 574
47 191 1 32 623
47 199 1 22 639
47 239 1 37 715
47 263 1 32 758
47 271 1 27 772
47 311 1 47 840
47 359 1 47 916
47 367 1 22 929
47 383 1 42 953
71 79 1 17 467
71 103 1 17 549
71 167 1 38 737
71 191 5 31 800
71 199 1 31 820
71 239 7 22 917
71 263 1 45 972
71 271 5 7 990
71 311 5 18 1077
71 359 1 66 1175
71 367 1 31 1191
71 383 1 59 1223
79 103 3 7 585
79 167 1 27 786
79 191 1 32 853
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Table 4.3: Distribution of combined half-`-sequences when N = 8

q1 q2 θ γ ζ
167 263 1 53 3272
167 359 1 77 3956
167 383 1 70 4115
167 479 1 101 4716
167 503 1 86 4859
167 719 1 125 6038
167 839 1 134 6632
167 863 1 86 6746
167 887 1 118 6859
263 359 1 93 5219
263 383 1 81 5429
263 479 1 122 6222
263 503 1 102 6410
263 719 1 152 7967
263 839 1 162 8750
263 863 1 101 8901
263 887 1 142 9050
359 383 1 114 6564
359 479 1 185 7523
359 503 1 150 7751
359 719 1 233 9632
359 839 1 246 10579
359 863 1 146 10762
359 887 1 214 10942
383 479 1 151 7826
383 503 1 132 8063
383 719 1 184 10020
383 839 1 198 11005
383 863 1 136 11195
383 887 1 176 11383
479 503 1 197 9240
479 719 1 307 11483
479 839 1 323 12612
479 863 1 193 12830
479 887 1 281 13045
503 719 1 245 11831
503 839 1 261 12993
503 863 1 164 13217
503 887 1 229 13439
719 839 1 407 16148
719 863 1 238 16426
719 887 1 353 16702
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Proof . Let b denote any block of τ−1 consecutive symbols. Let Ms(v1,b, v2) be the

occurrences of v1,b, v2 within one period of s. According to Lemma 4.3.1, we have

∣∣∣∣Ms(v1,b, v2)− q − 1

N τ+1

∣∣∣∣ ≤ 1 +
1

N τ+1
,

and

µ(τ ; v1, v2) =
∑
b

Ms(v1,b, v2),

where the sum is over all possible choices of b and there are N τ−1 of them. Then we

have

∣∣∣∣µ(τ ; v1, v2)− q − 1

N2

∣∣∣∣ =

∣∣∣∣N τ−1Ms(v1,b, v2)− q − 1

N2

∣∣∣∣
= N τ−1

∣∣∣∣Ms(v1,b, v2)− q − 1

N τ+1

∣∣∣∣
≤

(
1 +

1

N τ+1

)
N τ−1 = N τ−1 +

1

N2
.

which completes the proof. �

Furthermore, we get a sharper bound when N τ+1 < q with constraints on q. To

do this, we investigate the bound for |µ(τ ; v1, v2) − µ(τ ;u1, u2)| instead where v1, v2

and u1, u2 are two pairs of values that vary from 0 to N − 1. Here µ(τ ; v1, v2) is the

number of integers n with sn = v1 and sn+τ = v2 in an `-sequence s and similarly

µ(τ ;u1, u2) is the number of integers n with sn = u1 and sn+τ = u2 in s.

Theorem 4.3.3 Let s be an N-ary `-sequence with prime connection integer q =∑r
i=0 qiN

i where 0 ≤ qi < N for some positive integer r and 0 ≤ τ < T . If q1 =

q2 = · · · = qτ = 0 or q1 = q2 = · · · = qτ = N − 1, then the numbers µ(τ ; v1, v2) and

69



www.manaraa.com

µ(τ ;u1, u2) of occurrences of (sn, sn+τ ) with sn = v1, sn+τ = v2 and sn = u1, sn+τ = u2

for 0 ≤ n < T satisfy

|µ(τ ; v1, v2)− µ(τ ;u1, u2)| ≤ 1,

where 0 ≤ v1, v2, u1, u2 < N .

Proof . Let b be a block of consecutive symbols with length τ + 1 and let

b =
τ∑
i=0

biN
i and q′ =

τ∑
i=0

qiN
i

where b0 = v1, bτ = v2. The proof of Lemma 4.3.1 in [30] shows that if b < q′, then

n(b) = n1 + 1 and if b ≥ q′, then n(b) = n1 where n1 = bq/N τ+1c.

We first count the occurrences of (sn, sn+τ ) with sn = v1, sn+τ = v2. If bτ = v2 >

qτ , then b > q′ and there are N τ−1 such bs. If bτ = v2 < qτ , then b < q′ and there are

N τ−1 such bs. If v2 = qτ , then let q′′ = q′ − qτN τ =
∑τ−1

i=0 qiN
i and b′′ = b − v2N

τ .

We see that b < q′ if and only if b′′ < q′′.

Let ρ1 = |{b : 0 ≤ b′′ < q′′}|. Then

ρ1 =
τ−1∑
i=1

qiN
i−1 + ρ

′

1, (4.1)

where the value of ρ
′
1 depends on the relation between v1 and q0. Actually,

ρ
′

1 =

 1 if v1 < q0,

0 otherwise.
(4.2)

Let ρ2 = |{b : b′′ ≥ q′′}|. Since the total number of b′′s is N τ−1, we have

ρ2 = N τ−1 − ρ1.

From the analysis above we can get all the possible value for µ(τ ; v1, v2), which
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are

(I) (n1 + 1)N τ−1 if v2 < qτ ;

(II) n1N
τ−1 if v2 > qτ ;

(III)
∑τ−1

i=1 qiN
i−1 + 1 +N τ−1n1 if v2 = qτ and v1 < q0;

(IV)
∑τ−1

i=1 qiN
i−1 +N τ−1n1 if v2 = qτ and v1 ≥ q0.

The above four cases also apply to µ(τ ;u1, u2).

When q1 = q2 = · · · = qτ = 0, by eqs. (4.1) and (4.2) we have ρ1 = 1 or 0. Since

v1, v2, u1 and u2 vary from 0 to N − 1, µ(τ ; v1, v2) and µ(τ ;u1, u2) can only reach

the possible value in (II), (III) or (IV). Thus, µ(τ ; v1, v2) can be either n1N
τ−1 or

n1N
τ−1 + 1. Similarly µ(τ ;u1, u2) can be either n1N

τ−1 or n1N
τ−1 + 1. As a result,

|µ(τ ; v1, v2)− µ(τ ;u1, u2)| ≤ 1.

When q1 = q2 = · · · = qτ = N − 1, by eqs. (4.1) and (4.2) we have

ρ1 = N τ−1 or N τ−1 − 1.

In this case, µ(τ ; v1, v2) and µ(τ ;u1, u2) can only reach the possible value in (I),

(III) or (IV). Thus

|µ(τ ; v1, v2)− µ(τ ;u1, u2)| ≤ 1.

�
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4.4 Autocorrelation of Binary Half-`-sequences

Correlation properties of pseudorandom sequences are important measures of random-

ness. They have practical applications in spread spectrum communication systems,

radar systems, cryptanalysis, and so on [30]. Recall that the autocorrelation function

of a binary periodic sequence s = {si}∞0 with period T is defined as

Cs(τ) =
T−1∑
i=0

(−1)si+si+τ

for 0 ≤ τ < T . The autocorrelation function measures the similarity of the sequence

and its shifted versions. We have Cs(0) = T . Much research has been done on criteria

for optimal autocorrelation sequences [12, 67]. A sequence s is said to have optimal

autocorrelation if for any τ 6= 0, we have

(1) Cs(τ) = −1 and T ≡ −1 (mod 4); or

(2) Cs(τ) ∈ {1,−3} and T ≡ 1 (mod 4); or

(3) Cs(τ) ∈ {2,−2} and T ≡ 2 (mod 4); or

(4) Cs(τ) ∈ {0,−4} and T ≡ 0 (mod 4).

Sequences satisfying criteria (1) include Legendre sequences, Hall’s sextic residue

sequences, twin-prime sequences, m-sequences, GMW sequences, and Maschiettie’s

hyperoval sequences. These sequences are also said to have ideal 2-level autocorrela-

tion. One can find more detailed definitions of these sequences in [12, 67].

In this section, we investigate the autocorrelation properties of half-`-sequences

using eq. (2.6) with N = 2. For 0 ≤ τ < T , we see that

si + si+τ =
(
2−ih (mod q) (mod 2)

)
+
(
2−τ2−ih (mod q) (mod 2)

)
.
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As before, h is a quadratic residue modulo q and hence the autocorrelation function

of s at shift τ can be written as

Cs(τ) =
∑
x∈Q

(−1)x+(2−τ ·x (mod q)),

where Q is the set of quadratic residues modulo q. We need the following technical

lemmas.

Lemma 4.4.1 [61] Let q > 3 be a prime number. For 1 < u < q − 1, we have

∣∣∣∣∣
q−1∑
x=1

(−1)x+(u·x (mod q))

∣∣∣∣∣ ≤ 2
(⌈q

6

⌉
− 1
)
.

Moreover, for k = 0, 1,

q−1∑
x=1

(−1)x+(u·x (mod q)) = (−1)k · 2
(⌈q

6

⌉
− 1
)

if and only if

u ≡ (−1)k · 3 or (−1)k · 3−1 (mod q).

Let Q
′

denote the set of non-quadratic residues modulo q.

Lemma 4.4.2 Let q be an odd prime and q ≡ 7 (mod 8). We have

∑
x∈Q

(−1)x+(u·x (mod q)) =
∑
x∈Q′

(−1)x+(u·x (mod q)). (4.3)

Proof . When q ≡ 7 (mod 8), by the law of quadratic reciprocity [49] we have 2 ∈ Q
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and −1 ∈ Q′ . Then one can check

∑
x∈Q′

(−1)x+(u·x (mod q)) =
∑
x∈Q

(−1)(−x) (mod q)+(u·(−x) (mod q))

=
∑
x∈Q

(−1)(q−x)+(q−(u·x (mod q)))

=
∑
x∈Q

(−1)−(x+(u·x (mod q)))

=
∑
x∈Q

(−1)x+(u·x (mod q)).

�

Remarks. Lemma 4.4.2 is not true if q ≡ 1 (mod 8). For example, if q = 41 and

u ≡ 2 (mod q), then the left hand side of eq. (4.3) is 8 while the right hand side of

eq. (4.3) is −8.

Theorem 4.4.1 Let s be a binary half-`-sequence with prime connection integer q >

3 and q ≡ 7 (mod 8). For 0 < τ < (q − 1)/2, the autocorrelation of s satisfies

|Cs(τ)| ≤
⌈q

6

⌉
− 1.

Moreover, if 3 is a quadratic residue modulo q, then

Cs(τ) =
⌈q

6

⌉
− 1

if and only if

2−τ ≡ 3 or 3−1 (mod q).

If 3 is a non-quadratic residue modulo q, then

Cs(τ) = 1−
⌈q

6

⌉
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if and only if

2−τ ≡ −3 or − 3−1 (mod q).

Proof . By Lemma 4.4.2, we get

Cs(τ) =
1

2

q−1∑
x=1

(−1)x+(2−τ ·x (mod q)).

Then applying Lemma 4.4.1, we get the bound of Cs(τ).

Since 2−τ is a quadratic residue modulo q, according to Lemma 4.4.1 again, we

have

Cs(τ) =
⌈q

6

⌉
− 1 if and only if 2−τ ≡ 3 or 3−1 (mod q),

if 3 is a quadratic residue modulo q, and otherwise

Cs(τ) = 1−
⌈q

6

⌉
if and only if 2−τ ≡ −3 or − 3−1 (mod q).

�

Since the autocorrelation value of a binary half-`-sequence does not satisfy any of

the four criteria for an optimal sequence, it is not optimal.

Remarks. Theorem 4.4.1 does not holds when q 6≡ 7 (mod 8). For example,

when q = 41 ≡ 1 (mod 8), Cs(τ) = 8 > dq/6e − 1 = 6 when 2−τ = 2 (mod q).

4.5 Concluding Remarks

In this chapter, we introduce distribution properties of pseudorandom sequences by

combining two half-`-sequences using modular addition. A bound for the number

of occurrences of combined half-`-sequences in one symbol case is given. Bounds on

the higher odrder distribution (e.g., the number of occurrences of two symbols) are

not discussed here due to the increased number of cases and the resulting weaker
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bound. We present bounds on the distribution of pairs (sn, sn+τ ) for `-sequences.

The autocorrelation of half-`-sequences is also discussed.

Copyright c© Ting Gu, 2016.
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Chapter 5 Correlation Immune Functions

5.1 Introduction

In this chapter, a new correlation attack on nonlinear combination generators is

proposed. The success of this attack depends on the correlation between the output

of a nonlinear function of several LFSRs and the output of the nonlinear combination

function in the generator. To measure resistance to such attacks, we introduce the idea

of q-correlation immune functions. We investigate the properties of these functions

and their constructions.

Figure 5.1 shows a nonlinear combination generator with n LFSRs and a nonlinear

combination function f . Let X t = {xt1, xt2, · · · , xtn} denote the n output bits from

LFSR 1

LFSR 2

·
·
·

LFSR n

��
��
f

��
��

Z
Z
Z
Z
Z
Z
Z~XXXXXXXz

�
�
�
�
�
�
�3

?

- -

xt1

xt2

xtn
st

plaintext ciphertext

Figure 5.1: Stream Cipher with a Nonlinear Combination Generator

the n LFSRs at time t and ri be the length of the ith LFSR for 1 ≤ i ≤ n. The

combination function f is a Boolean function of n variables from Fn2 to F2: at time t
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the generator output a single bit

st = f(X t).

This single bit st will XOR with a plaintext bit to get a ciphertext bit. The

combination function f should be balanced in order to generate keystream bits as

close to the uniform distribution as possible. In other words, f should output 0 or 1

with probability 1/2.

5.1.1 Correlation Attacks

There are many types of correlation attacks on stream ciphers and block ciphers.

The goal of these attacks is to recover the secret key. In a brute force attack of

the scheme in Figure 5.1, we may need O(2r1+r2+···+rn) operations to get the initial

states of the LFSRs. However, this is infeasible if r1 + ... + rn is large enough (128

will do). Siegenthaler designed a correlation attack based on the correlation between

the output of LFSRs and keystream from the combination function in a divide-and-

conquer manner [59]. One can guess and exploit the initial states of the LFSRs one

by one. The complexity of this attack needs O(
∑n

i=1 2ri) operations, which is much

less than is needed by a brute force attack. The attack applies if and only if the

output keystream is correlated to the output of one LFSR or a linear combination of

the output of LFSRs. For simplicity, we only discuss the situation when the output

keystream is correlated to the output of one LFSR. This equivalently means that

there exists i such that the linear bias

ε =

∣∣∣∣prob(xti = st)−
1

2

∣∣∣∣ 6= 0,

where xti and st are the outputs at time t from the ith LFSR and keystream generator

respectively. This correlation can be detected by computing the correlation between
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N bits of the keystream and the corresponding output bits of the LFSR generated

from a guessed initial state x0
i :

C(st, x
t
i) =

N−1∑
t=0

(−1)st⊕x
t
i .

The expected value of the quantity is 2Nε when x0
i is the correct value of the initial

state for the ith LFSR. This attack consists of an exhaustive search of all the ri

bits of the initial state x0
i . For each guess value x0

i , the correlation between the N

keystream bits and output bits of LFSR is calculated. By comparing the C(st, x
t
i)

with a given threshold one can determine whether a guess is right or wrong. The

output keystream bits are expected to be uncorrelated with the output of ith LFSR

for a wrong guess.

To resist such attacks, Siegenthaler introduced the notion of correlation immune

functions, which reflects a relation between f(x) and the linear functions (or affine

functions). We recall that f(x) is correlation immune of order k if its values are

statistically independent of any subset of k input variables, or f(x) is statistically in-

dependent of any linear or affine functions. Xiao and Massey investigated correlation

immunity of order k via the Walsh-Hadamard transform (see Section 2.3) as shown

in the following theorem.

Theorem 5.1.1 (Xiao-Massey Theorem)[65] A Boolean function f(x) is correlation

immune of order k if and only if W (f)(ω) = 0 for all ω ∈ Fn2 with 1 ≤ wt(ω) ≤ k.

5.1.2 New Correlation Attacks

The correlation attacks introduced by Siegenthaler are based on the correlation be-

tween keystream sequence and a linear combination of the outputs of several LFSRs.

It is natural to ask whether we can find a correlation between keystream sequence

and a nonlinear combination of the outputs of LFSRs, and, if so, will it need fewer
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keystream bits and have lower time complexity? Let q(x) = q(x1, x2, · · · , xn) ∈ Bn,

which combines the outputs from k LFSRs. More precisely, q(x) depends on only

k variables xi1 , xi2 , · · · , xik where 1 ≤ k ≤ n. Actually, the bigger k is the more

keystream bits are needed by the attack [17].

We can build a statistical model as Siegenthaler does for the correlation attack

by measuring the correlation between f(x) and q(x). Let Xi be the random variable

over the output of the ith LFSR for 1 ≤ i ≤ n. Each Xi satisfy the probability

distribution

prob(Xi) =


prob(xi = 1) = 1/2

prob(xi = 0) = 1/2.

Note here we assume the output sequence of each LFSR is an m-sequence.

Let Y t be the random variable over the output of function f . We have P (Y t =

1) = P (Y t = 0). Let Zt be the random variable over the output of function q(x). We

have

prob(Zt) =


prob(z = 1) = wt(q)

2k

prob(z = 0) = 1− wt(q)
2k

.

We also have

prob[(Y t ⊕ Zt) = 1] =
1

2
− ε.

We use random variable

α =
N−1∑
t=0

(1− 2(Y t ⊕ Zt)) (5.1)

as a measure for the correlation between Y t and Zt. Since all the terms (Y t ⊕ Zt)

in the sum of eq. (5.1) are independent and identically distributed random variables,

β =
∑N−1

t=0 (Y t ⊕ Zt) satisfies a binomial distribution. It has mean value mβ and
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variance σ2
β given by

mβ = N(
1

2
− ε)

and

σ2
β = N(

1

2
+ ε)(

1

2
− ε).

The mean value mα and variance σ2
α will be

mα = N − 2N(
1

2
− ε) = 2ε

and

σ2
α = 22σ2

β = 4N(
1

2
+ ε)(

1

2
− ε).

When ε = 0, we have

mα = 0

and

σ2
α = N.

The random variable α can be assumed to be normally distributed with mean value

mα and variance σ2
α for large N due to the central limit theorem.

Our attack works as follows.

step 1: Observe N bits of keystream st where st ∈ F2. These keystream bits

are not required to be consecutive, but if they are not, then we need to record their

positions.

step 2: Guess the initial states of k different LFSRs. There are 2ri1+···+rik possible

initial states. For each of the guessed initial states, we compute the state value

(xti1 , x
t
i2
, · · · , xtik) at corresponding time t. Then we compute q(xti1 , x

t
i2
, · · · , xtik) and

evaluate α.

step 3: Input a constant threshold value c∗ for α. If α > c∗, the guessed initial
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states are regarded as the right ones. Otherwise, run the above steps again with new

guessed initial states.

The detail of the calculation is related to hypothesis testing [51].

5.1.3 q-transform

The Walsh-Hadamard transform measures the relations between f(x) and affine func-

tions. Sometimes we need to consider a relation between f(x) and a function of small

degree but larger than one. A typical application is the algebraic attack on stream

ciphers. Klapper introduced the notion of q-transform [38], which is a generalization

of the Walsh-Hadamard transform, to measure the proximity of two functions.

Let GLn be the set of nonsingular n by n matrices with entries in F2. The

cardinality of GLn is

N = (2n − 20)(2n − 21) · · · (2n − 2n−1).

For a Boolean function q(x) ∈ Bn, the q-transform of f(x) at A ∈ GLn is the real

valued function on GLn

W q(f)(A) =
∑
x∈Fn2

(−1)f(x)+q(xA).

In fact, the q-transform measures the Hamming distance between f(x) and the func-

tions from the following set

Sq = {q(xA) : A ∈ GLn},

which is the smallest set of functions obtained from q(x) by change of basis. We

remark that, if q(x1, x2, . . . , xn) = xi for some 1 ≤ i ≤ n (in fact q(x) can be any

linear function), W q(f)(A) exactly runs through W (f)(ω), where ω 6= 0, N/(2n − 1)
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many times when A ranges over GLn. Additionally we set

W q(f)(0) =
∑
x∈Fn2

(−1)f(x),

where 0 is the zero matrix of n by n.

Define the set for q(x)

Hq = {H ∈ GLn : qH(x) = q(x)},

which is called the stabilizer of q(x). One can show that Hq is a subgroup of GLn

since Hq is closed under multiplication. The cosets

AHq = {AH : H ∈ Hq}, A ∈ GLn

give a partition of GLn. One can check

W q(f)(AH) = W q(f)(A) for H ∈ Hq. (5.2)

So we only need to take a representative of each coset of Hq into account.

We can generalize the new correlation attack in section 5.1.2 by using qA(x) =

q(xA) where A ∈ GLn. All these qA(x) where A ∈ GLn can be used as nonlinear

functions that combine the outputs of LFSRs to launch the new correlation attacks.

We call these attacks q-correlation attacks. To resist q-correlation attacks, the func-

tion f(x) must be statistically independent of qA(x) for A ∈ GLn just as f(x) needs

to be correlation immune to resist correlation attacks. The q-transform is a tool for

understanding resistance to a q-correlation attack. We define q-correlation immune

functions in the next section.
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5.2 Definitions of q-correlation Immune Functions

In order to introduce the notion of the q-correlation immune function, we define the

weight of a matrix as follows.

Definition 5.2.1 Let A = (a1|a2| . . . |an) be an n by n matrix over F2, where ai is

the i-th column of A for 1 ≤ i ≤ n. We define the weight of A, denoted by col.wt(A),

as the maximal value among the weights of the columns of A, i.e.,

col.wt(A) = max{wt(ai) : 1 ≤ i ≤ n}.

Furthermore we define the weight of a matrix A with respect to q(x) or more precisely

with respect to Hq.

Definition 5.2.2 Let A ∈ GLn. We define the weight of A with respect to q(x),

denoted by wtq(A), as the minimal value among the weights of AH for all H ∈ Hq,

i.e.,

wtq(A) = min {col.wt(AH) : H ∈ Hq} .

Then we can choose a representative matrix A of the coset AHq with the weight

wtq(A).

Let

S1 = {A ∈ GLn : q(xA) depends on at most k vairiables}

and

S2 = {A ∈ GLn : 1 ≤ wtq(A) ≤ k}.

Lemma 5.2.1 Suppose q(x) =
∏

i∈I xi where I ⊂ {1, 2, · · · , n}. In other words, q(x)

is a monomial. Suppose that qA(x) = q(xA) depends on only k variables. Then all

xj appearing in xAi also appear in qA(x), so wt(Ai) ≤ k for i ∈ I.
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Proof . Suppose that for some i ∈ I we have wt(Ai) > k. Let wt(As) = t > k

where s ∈ I we have xAs = xs1 + xs2 + · · · + xst . Then q(xA) =
∏

i∈I(xAi) =

(xs1 + xs2 + · · ·+ xst)
∏

i∈I/{s}(xAi). We claim that xs1 , xs2 , · · · , xst appear in q(xA).

Otherwise, suppose xs1 vanishes in q(xA) and let
∏

i∈I/{s}(xAi) = xs1C +D where C

and D do not contain xs1 . Then we have

xs1(xs1C +D) + xs1xs2C + · · ·+ xs1xstC

= xs1(C +D + xs2C + · · ·+ xstC) = 0,

which means C +D + xs2C + · · ·+ xstC = 0 in F2. Then we have

q(xA) = (xs1 + xs2 + · · ·+ xst)(xs1C +D)

= (xs2 + · · ·+ xst)D

= (xs2 + · · ·+ xst)(1 + xs2 + · · ·+ xst)C

= 0.

Since q(x) and q(xA) have identical distributions of values (up to a permutation),

q(xA) = 0, so is the same for q(x) which is a contradiction to q(x) as a monomial.

Thus all xs1 , xs2 , · · · , xst appear in q(xA), which is a contradiction to that q(xA)

depends on k variables. So wt(Ai) ≤ k.

�

Lemma 5.2.1 may not hold when q(x) is not a monomial. For example, when

q(x) = (x1 + x3)(x2 + x4), there is an n by n matrix A with q(xA) = x1x2. There
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exists an i with 1 ≤ i ≤ 4 such that wt(Ai) = 3 > 2, e.g.,

A =



1 1 0 1

0 0 0 1

1 1 1 1

0 1 0 1


.

Lemma 5.2.2 If q(x) is a monomial and qA(x) = q(xA) depends on only k variables,

then there is B ∈ Hq such that 1 ≤ col.wt(AB) ≤ k.

Proof . It is trivial that col.wt(AB) ≥ 1. Suppose q(x) =
∏

i∈I xi where I ⊂

{1, 2, · · · , n}. Then q(xA) =
∏

i∈I(xAi). Since q(xA) depends on only k variables,

from Lemma 5.2.1 we have wt(Ai) ≤ k. Let C be an invertible matrix with Ci = Ai

where i ∈ I and each of whose remaining n−|I| columns has weight 1. Also, we have

q(xC) =
∏
i∈I

(xAi) = q(xA).

As a result, we have C = AB where B ∈ Hq and col.wt(AB) = col.wt(C) ≤ k.

�

We then have the following two types of definitions of q-correlation immune of

order k according to S1 and S2.

Definition 5.2.3 A Boolean function f(x) ∈ Bn is type I q-correlation immune of

order k if W q(f)(A) = 0 for all A ∈ S1.

Definition 5.2.4 A Boolean function f(x) ∈ Bn is type II q-correlation immune of

order k if W q(f)(A) = 0 for all A ∈ S2.

86



www.manaraa.com

Theorem 5.2.1 Let f be a Boolean function in Bn. If q(x) is a monomial and f is

type II q-correlation immune of order k, then f is also a type I q-correlation immune

of order k.

Proof . If q(x) is a monomial and qA(x) = q(xA) depends on only k variables, from

Lemma 5.2.2, we know that there is B ∈ Hq such that 1 ≤ col.wt(AB) ≤ k. Thus,

1 ≤ wtq(A) ≤ k. Hence we have S1 ⊂ S2. As a result, if f is type II q-correlation

immune of order k, then f is also a type I q-correlation immune of order k.

�

When q(x) = x1, according to the analysis above, f(x) is both type I and type II

q-correlation immune of order k if and only if it is correlation immune of order k. So

we can view both definitions as generalizations of correlation immunity.

From Definition 5.2.4, we find that the notion depends heavily on Hq, which is

not easy to determine. Below we prove an equivalent definition, which however only

depends on the weight col.wt(A) of A.

Theorem 5.2.2 (Equivalent definition). A Boolean function f(x) ∈ Bn is type

II q-correlation immune of order k iff W q(f)(A) = 0 for all A ∈ GLn with 1 ≤

col.wt(A) ≤ k.

Proof . For A ∈ GLn, we have wtq(A) ≤ col.wt(A), so 1 ≤ col.wt(A) ≤ k implies

1 ≤ wtq(A) ≤ k. Thus if W q(f)(A) = 0 for all A ∈ GLn with 1 ≤ col.wt(A) ≤ k,

then f(x) is type II q-correlation immune of order k.

Conversely, for A ∈ GLn with 1 ≤ wtq(A) ≤ k, there is an H ∈ Hq such that

col.wt(AH) = wtq(A) ≤ k. So by (5.2), we get W q(f)(A) = 0, i.e., f(x) is type II

q-correlation immune of order k.

�
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5.3 Equivalent Characterizations for q-correlation Immune Functions

Theorem 5.3.1 For any Boolean function q(x) ∈ Bn, a function f(x) ∈ Bn is type

II q-correlation immune of order k if and only if f(x) + qA(x) is balanced for all

A ∈ GLn with 1 ≤ col.wt(A) ≤ k.

The proof of Theorem 5.3.1 follows from the definition of q-transform directly. From

Theorem 5.3.1 we can know that if f(x) is q-correlation immune of order k, then it is

resistant to q-correlation attacks involving any k LFSR outputs, since the probability

prob(f(x) = qA(x)) = 1/2 for all A ∈ GLn with 1 ≤ col.wt(A) ≤ k.

We would also like to discuss other equivalent statements for q-correlation immune

functions.

Definition 5.3.1 The functions f(x) and qA(x) are statistically independent if

prob(f(x) = 1|qA(x) = 1) = prob(f(x) = 1|qA(x) = 0) = prob(f(x) = 1). (5.3)

Here we give an example first. Let q(x) = q(x1, x2, x3) = x1x2x3 + x1 + x2 + x3.

We find that for those A with col.wt(A) = 1, we have

qA(x) = q(xA) = q(x).

We choose f(x) = 1 if x ∈ {(000), (100), (101)} and f(x) = 0 otherwise, we can prove

f(x) + qA(x) is balanced, i.e., f(x) is a q-correlation immune function of order 1 by

Theorem 5.3.1. However, f(x) and qA(x) are not statistically independent because

eq. (5.3) does not hold. We note that in this example, q(x) is not balanced. But for

balanced functions q(x) we have following results.

Theorem 5.3.2 Let q(x) ∈ Bn be a balanced function. Then f(x) ∈ Bn is type

II q-correlation immune of order k if and only if f(x) and qA(x) are statistically
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independent for all A ∈ GLn with 1 ≤ col.wt(A) ≤ k.

To prove Theorem 5.3.2, we need the following lemma. For a Boolean function

g(x), the weight of g(x) denoted by wt(g) is wt(g) = |{x ∈ Fn2 : g(x) = 1}|.

Lemma 5.3.1 For a function q(x) ∈ Bn, we have wt(q) = wt(qA) for all A ∈ GLn.

In particular if q(x) is balanced, then so is qA(x) for all A ∈ GLn.

Proof . The result follows from the fact that xA ranges over Fn2 as x does. �

Proof of Theorem 5.3.2: First we suppose that f(x) is q-correlation immune of

order k. By Theorem 5.3.1 we see that f(x) + qA(x) is balanced for all A ∈ GLn with

1 ≤ col.wt(A) ≤ k. For such A we let

Mij = |{x ∈ Fn2 : f(x) = i, qA(x) = j}|, where i, j ∈ F2.

Then we have M10 +M01 = 2n−1 since f(x)+qA(x) is balanced and M11 +M01 = 2n−1

since qA(x) is balanced by Lemma 5.3.1. So we get M11 = M10 and

prob(f(x) = 1|qA(x) = 1) =
M11

2n−1
=

2M11

2n
=
M11 +M10

2n
=
wt(f)

2n
= prob(f(x) = 1).

Similarly we have

prob(f(x) = 1|qA(x) = 0) =
wt(f)

2n
= prob(f(x) = 1),

and we complete the proof of the first part.

Now we suppose that f(x) and qA(x) are statistically independent for all A ∈ GLn

with 1 ≤ col.wt(A) ≤ k. For such A, we see that prob(qA(x) = 0) = prob(qA(x) =
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1) = 1/2 since qA(x) is balanced. Then for b ∈ F2 we get

prob(f(x) + qA(x) = b)

=
∑
i∈F2

prob(f(x) = i, qA(x) = b− i)

=
∑
i∈F2

prob(f(x) = i|qA(x) = b− i) · prob(qA(x) = b− i)

=
∑
i∈F2

prob(f(x) = i) · prob(qA(x) = b− i)

= 1
2

∑
i∈F2

prob(f(x) = i) = 1
2
,

which indicates that f(x) + qA(x) is balanced. Hence we complete the proof by

Theorem 5.3.1.

�

By a similar proof, we can get the following result.

Theorem 5.3.3 Let q(x) ∈ Bn be a balanced function. Then f(x) ∈ Bn is type

II q-correlation immune of order k if and only if prob(qA(x) = 1|f(x) = 1) =

prob(qA(x) = 0|f(x) = 1) = 1/2 for all A ∈ GLn with 1 ≤ col.wt(A) ≤ k.

5.4 Certain Properties of q-correlation Immune Functions

Proposition 5.4.1 If f(x) ∈ Bn is type II q-correlation immune of order k ≥ 1,

then deg(f) = n iff wt(q) is odd.

Proof . We see that wt(qA) = wt(q) for all A ∈ GLn by Lemma 5.3.1 and f(x)+qA(x)

is balanced for all A ∈ GLn with 1 ≤ col.wt(A) ≤ k by Theorem 5.3.1. So wt(q) is

odd if and only if wt(f) is odd and hence deg(f) = n.

�

Proposition 5.4.2 Let C ∈ GLn with col.wt(C) = 1. If f(x) ∈ Bn is type II

q-correlation immune of order k, then so is f(xC).
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Proof . Write fC(x) = f(xC). We have for A ∈ GLn

W q(fC)(A) = W q(f)(C−1A).

On the other hand, the restriction on col.wt(C) = 1 implies that the weight of each

column of C is one, so is the weight of each column C−1, i.e., col.wt(C−1) = 1. Hence

we get

col.wt(C−1A) = col.wt(A), A ∈ GLn.

Now for all A ∈ GLn with 1 ≤ col.wt(A) ≤ k, we derive W q(f)(C−1A) = 0 since f(x)

is q-correlation immune of order k. Then we can get the desired result according to

the analysis above. �

5.5 Construction of q-correlation Immune Functions

In this section, we discuss the possible techniques for the construction of q-correlation

immune functions.

5.5.1 A General Construction

Here we give a general construction of type II q-correlation immune functions of order

k. Let 1 ≤ r < n. Suppose that q(x) ∈ Bn depends only on x1, . . . , xr. For A ∈ GLn

with col.wt(A) ≤ k, we see that qA(x) depends on at most kr coordinates.

Let f(x) = f1(x)+f2(x) ∈ Bn, where f1(x) ∈ Bn is a linear function that depends

on at least kr + 1 coordinates and f2(x) ∈ Bn (possibly nonlinear) depends only on

the complement of the support of f1(x). Here the support of f1(x) means the set of

variables appearing in the algebraic normal form of f1(x).

It follows that f(x) + qA(x) has the form g(x) + xi for some g ∈ Bn and 1 ≤

i ≤ n such that g(x) does not depend on xi. Therefore f(x) + qA(x) is balanced, so
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W q(f)(A) = 0 for all A ∈ GLn with col.wt(A) ≤ k. This means f is q-correlation

immune of order k by Theorem 5.2.2.

We find that from the construction above

deg(f) ≤ n− (kr + 1).

However, there do exist f(x) and q(x) such that f(x) is q-correlation immune of

order n and deg(f) = n. For example, let q(0) = 0 and wt(q) = 2n−1 − 1. We have

qA(0) = 0 and wt(qA) = 2n−1 − 1 for all A ∈ GLn. Then both f(x) and 1 + f(x)

satisfying

f(x) =

 1, if x = 0,

0, otherwise,

are q-correlation immune of order n.

5.5.2 Construction Based on Linear Codes

Let F be a finite field of size p. An [n, k, d] linear code C is a linear subspace of Fn of

dimension k and with minimum distance d, i.e., the minimum Hamming weight of its

nonzero code words is d. For every two codewords c1, c2 ∈ C, we have a1c1 + a2c2 ∈ C

where a1, a2 ∈ F. Every basis of a linear [n, k, d] code consists of k codewords.

Therefore the size of C is pk. A generator matrix of an [n, k, d] linear code over F is

a k × n matrix, typically denote by G. The rows of G form a basis of the code and

G is not unique for a given linear code. The rank of a generator matrix C equals the

dimension of C.

Wu and Dawson [64] investigated correlation immunity based on linear codes as

shown in Lemma 5.5.1. We next generalize their construction to type I q-correlation

immunity.
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Lemma 5.5.1 [64] If G is a generating matrix of an [n, k, d] linear code, then for

any g(y) ∈ Bk, the correlation immunity of f(x) = g(xGT ) is at least d− 1.

Lemma 5.5.2 Let q(x) =
∏m

j=1 xij . Let A = (A1|A2| · · · |An) be an n by n matrix.

If q(xA) depends on at most k variables, then

|supp(xAi1) ∪ supp(xAi2) ∪ · · · ∪ supp(xAim)| ≤ k.

Proof . Let wt(As) = t where s ∈ {i1, i2, · · · , im} and xAs = xs1 +xs2 + · · ·+xst . By

Lemma 5.2.1 we know that xs1 , xs2 , · · · , xst all appear in q(xA). As a result, if q(xA)

depends on at most k variables, then

|supp(xAi1) ∪ supp(xAi2) ∪ · · · ∪ supp(xAim)| ≤ k.

�

Theorem 5.5.1 Let q(x) be a monomial depending on m variables. In other words,

q(x) = xi1xi2 · · · xim ∈ Bn where 0 ≤ m ≤ n. Let C be an [n, k, d ≥ 2] code with

generator matrix G. Let g ∈ Bk be nondegenerate and let f(x) = g(xGtr) ∈ Bn.

Then f is type I q-correlation immune of order d− 1.

Proof . Let A = (A1|A2| · · · |An), we have

q(xA) = (xAi1)(xAi2) · · · (xAim).

Let

ω(Ai1 , Ai2 , · · · , Aim) = |supp(xAi1) ∪ supp(xAi2) ∪ · · · ∪ supp(xAim)|.
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From Lemma 5.5.2 we know that f is type I q-correlation immune of order t if for all

the linearly independent Ai1 , Ai2 , · · · , Aim such that

ω(Ai1 , Ai2 , · · · , Aim) ≤ t,

we have

rank(Gtr|Atri1 |A
tr
i2
| · · · |Atrim) = k +m. (5.4)

Let H = {
∑m

j=1 ajAij |aj ∈ F2}. Eq. (5.4) is equivalent to saying that H ∩C = {0n}.

Let e be the minimum value of ω(Ai1 , Ai2 , · · · , Aim) over all Ai1 , Ai2 , · · · , Aim that

are linearly independent and satisfy H ∩ C 6= {0n}.

We know that

ω(Ai1 , Ai2 , · · · , Aim) ≥ max{wt(h), h ∈ H}.

If H ∩ C 6= {0n}, there exists a nonzero h
′ ∈ H ∩ C. Since wt(h

′
) ≥ d, then

ω(Ai1 , Ai2 , · · · , Aim) ≥ d.

Thus e ≥ d. Then f is q-correlation immune of order d− 1. �

When q(x) is linear, f(x) is both type I and type II q-correlation immune of

order k if and only if it is correlation immune of order k. At the end of this section,

we discuss some relations between correlation immune functions and q-correlation

immune functions based on linear codes when q(x) is nonlinear.

Lemma 5.5.3 Let G be the generating matrix of an [n, 2, d] linear code where d ≥

4 and let the transpose of generating matrix GT = [g1, g2]. Let g(y) = y1y2 and

f(x) = g(xGT ) = (xg1)(xg2) = (
⊕m

i=1 xsi)(
⊕n

j=1 xtj). If q(x) = xcxd where c, d ∈
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{1, 2, · · · , n} \ {s1, s2, · · · , sm, t1, t2, · · · , tn}. Then the correlation immunity of f(x)

is at least 3 and f(x) + q(x) is unbalanced.

Proof . The correlation immunity of f(x) = g(xGT ) is at least d−1 ≥ 3 from Lemma

5.5.1. We also have that xgT1 , xg
T
2 , xc, xd are linearly independent. As a result, the

rank of f(x) + q(x) = (xgT1 )(xgT2 ) + xcxd is 4. According to the classification of

quadratic forms in [30], f(x) + q(x) is unbalanced.

�

From Lemma 5.5.3, we can get a class of Boolean function f(x) which is correlation

immune of order higher than 3 but is not type I q-correlation immune of order 2.

Let’s consider the case when f(x) is q-correlation immune of order k but is not

correlation immune of order k. Experimental results show the existence of such f(x).

For example, f(x) = x1x2 +x1x3 +x1x4 +x2x3 +x2x4 +x3x4 is q-correlation immune

of order 2 but is not correlation immune of order 2 over 4 variables.

5.6 Concluding Remarks

In this chapter, we present a new correlation attack by exploring the correlation

between the output of a nonlinear function of several LFSRs and the output of the

nonlinear combination function in the generator. To resist this attack, we propose

the idea of q-correlation immune functions. We give two definitions of q-correlation

immune functions. Certain properties and possible constructions are discussed.

Copyright c© Ting Gu, 2016.
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Chapter 6 Future Work

This dissertation presents research work on distribution properties of N -ary half-`-

sequences with odd prime connection integers. One can generalize the definition of

half-`-sequences with prime power connection integers. In the future, I plan to explore

more on some statistical properties of generalized half-`-sequences. This dissertation

discusses a new type of correlation attack and q-correlation immune functions. In

this chapter, we outline the research directions in these areas and the topics that we

are interested to work on in the future.

6.1 Half-`-sequences with Prime Power Connection Integers

As mentioned above, we would like to investigate some statistical properties of gen-

eralized half-`-sequences with prime power connection integers. Let q = pm with p an

odd prime and m ≥ 1. We extend the definition of half-`-sequences in the following

way.

Definition 6.1.1 A sequence s with prime power connection integer q is called a

half-`-sequence if the period of s is φ(q)/2.

Indeed, when m = 1, s is the half-`-sequence we discussed in Chapter 3.

Let ξ be a complex primitive qth root of unity. In Chapter 3, we need a bound on

∑
z∈Q

ξbz

where b 6≡ 0 (mod q) when q is an odd prime. Now we extend the result to the case

when q is a prime power by using the following lemma.
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Lemma 6.1.1 [19] Let f be a polynomial over Z of degree d ≥ 1 and dp ≡ d (mod p).

Then for any prime p with dp ≥ 1 and any m ≥ 1 we have

∣∣∣∣∣
pm∑
x=1

ξf(x)

∣∣∣∣∣ ≤ 3(d− 1)pm(1−1/d).

In particular,

∣∣∣∣∣∑
z∈Q

ξbz

∣∣∣∣∣ =
1

2

∣∣∣∣∣∣
∑
c∈Z∗pm

ξbc
2

∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∣
pm∑
c=1

ξbc
2 −

pm−1∑
d=1

ξc(pd)2

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
pm∑
c=1

ξbc
2

∣∣∣∣∣+

∣∣∣∣∣∣
pm−1∑
d=1

(ξp
2

)cd
2

∣∣∣∣∣∣


=
1

2

∣∣∣∣∣
pm∑
c=1

ξbc
2

∣∣∣∣∣+ p

∣∣∣∣∣∣
pm−2∑
d=1

(ξp
2

)cd
2

∣∣∣∣∣∣


≤ 1

2

(
3pm/2 + p · 3p(m−2)/2

)
= 3pm/2.

where b 6≡ 0 (mod pm) and Q is the set of quadratic residues modulo pm.

The Fourier transform of a complex valued function f : Zpm → C is given by

f̂(b) =
1

pm

pm−1∑
c=0

f(c)ξ−bc.

By the Fourier inversion formula we have

f(c) =

pm−1∑
b=0

f̂(b)ξbc.

In the future, we plan to investigate the following problems related to some sta-

tistical properties of half-`-sequences with prime power connection integers.

• The number of occurrences of one symbol within one period of a half-`-sequence;

• The number of pairs of symbols with a fixed distance between them within one
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period of a half-`-sequence;

• The number of triples of consecutive symbols within one period of a half-`-

sequence;

• The autocorrelation of a half-`-sequence.

6.2 Problems Related to q-transform

In this dissertation, we present a new correlation attack by exploiting the correlation

between the output of a nonlinear function of several LFSRs and the output of the

nonlinear combination function in the generator. We build a statistical model for this

attack and describe the steps of this attack. Much work is needed for the analysis of

this attack. In the future, we plan to work in the following directions.

• The data complexity or the number of keystream bits needed for the the attack;

• The success rate of this attack;

• The linear bias plays an important role in the analysis of data complexity and

success rate. We are interested in finding efficient methods to obtain a nonlinear

function such that the linear bias reaches maximum value;

• Analysis of the new correlation attack on existing LFSR based stream ciphers.

To resist the new correlation attack, we propose the idea of q-correlation immune

functions based on q-transform. Certain properties are discussed for q-correlation

immune functions. We also discuss the construction of q-correlation immune functions

when q(x) is a monomial. We plan to pursue more results on the construction of q-

correlation immune functions when q(x) is a polynomial in the future. We are also

interested in counting the number of such functions.
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6.3 Design of Stream Ciphers based on FCSRs

While there are several stream ciphers based on LFSRs, F-FCSR stream ciphers

in eSTREAM project [55] are the first popular FCSR based stream ciphers that

arouse much attention. The F-FCSR stream cipher uses an FCSR in Galois mode

and takes a linear combination of the state bits to produce output. This stream

cipher is extremely fast due to the very simple output function. It was initially in

the eSTREAM portfolio, but was subsequently broken by Hell and Johansson [35]

due to the linearity of its filter function. Nonetheless, in his plenary talk at SETA

2012, Johansson said he believes FCSRs have an important role as building blocks for

future stream ciphers. I plan to replace the linear output function with a nonlinear

output function, which generate equivalent sequence for F-FCSR and work on a more

complex FCSR based construction to design secure stream ciphers.

Copyright c© Ting Gu, 2016.
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